

Wi111p Progra111111ing
for All

Lee CalcraH and Alan Wrigley

Published by
RISC Developments Ltd, St Albans

October 1992

Wimp Programming for All
Lee Cakraft and Alan Wrigley

© RISC Developments Ltd. 1992
ISBN 1-85142-088-6
First edition October 1992

All rights reserved. No part o~ this book or any of the programs to which it
relates may be reproduced or translated in any form, by any means,
mechanical, electronic or otherwise, without the prior written consent of the
publisher.

Disclaimer: Neither the publisher nor the authors can accept any liability as
to the suitability or accuracy of any information, or of the programs on the
associated disc, for any given application. No liability can be accepted for
any consequential loss or damage however caused arising from the use of
the advice or programs contained in this book, or from the use of any
program on the associated disc.

This book was produced entirely on an Acom Archimedes. It was written
and edited using RISC Developments' DeskEdit program and text editor, and
typeset using the same publisher's Ovation DTP package.

Published by RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts
ALl 4JS.
Telephone (0727) 40303, Fax (0727) 860263.

Printed and bound in the UK by Arion House, Kings Langley, Herts

Contents

Introduction 6

1 Introducing the Wimp 9
What is the Wimp? 9
Multi-tasking 10
Wimp applications 10
SWI calls 13
Outline of a Wimp program 16
Application directories 18
Introduction to error handling 22

2 Windows 24
Introduction to windows 24
Creating a window 25
Window size 30
Scroll offsets 32
Window colours 33
Window flags 34
Window title 37
Work area flags 37
Miscellaneous window information 39
Opening and closing a window 39
Window flag generator 41

3 The Wimp Poll 42
The poll loop 42
Null reason codes 45
Requests to open or close a window 45
Pointer over window 46
Mouse clicks 46
Key presses 48
Masking events 50

4 Error Handling 52
Trapping errors 52

-~ Reporting errors 53
Responding to error boxes 56

3

Wimp Programming for All

5 Icons 59
Icons in use 59
Creating icons 60
Icon flags 63
Indirected icons 66
Exclusive selection groups 69
Menu icons 70
Radio icons 70
Writable icons 72
Altering icons 74
Validation 75
Sprite icons 77
The icon bar 80

6 Menus 85
The Wimp menu system 85
Creating a menu 87
Menu structure 89
Menu items 90

·· Menu icon flags and data 91
Menu positioning 92
Menu selection 92
Handling Adjust 94
Ticking and shading items 95
Submenus 96
Dialogue boxes 98
Implementing more than one menu 100

7 Redrawing Windows 102 "
Introduction to user-redraw 102
The redraw process 102
Forcing a redraw 109
Efficient redraws 112
Redrawing text 113
Redrawing graphics 116

8 The Wimp Message System, Loading and Saving Data 119
Receiving messages 119
Message action codes 120
File information utility 124
Error-returning SWI calls 126
Data transfer protocol 128

4

Sending messages
Implementing a save box
Object dragging
Saving data
Submenu warnings

9 Templates
What is a template?
Using FormEd
Creating a window
Adding some icons
Sprite-only icons
Text-plus-sprite icons
Using templates in an application
Using sprites from more than one area

10 Printer Drivers and Outline Fonts
Printer drivers
Internal co-ordinates
The print job
Drawing the page
Colour translation
Outline fonts
Displayinf outline fonts
Printing ojtline fonts

~ Appendices
A Indirection Operators
B Application Resources
C Setting up a Sprite Area
D SWI calls described in this book
E Associated Disc
F The Wimp Programmer's Toolkit

Index

Contents

128
130
134
137
137

141
141
142
143
147
148
149
151
155

157
157
159
161
167
168
168
171
172

175
178
183
185
187
188
189

5

Introduction

Welcome to the Wimp. This book has been written to satisfy the need for a
straightforward explanation of the techniques involved in programming
Acorn's Window Manager (known as the Wimp), as provided on the
Archimedes and other computers using Acorn's RISC OS operating system.
Henceforward, this book will use the generic names "Archimedes" and ·­
"Arc" to refer to all computers within these ranges, unless specifically
stated otherwise.

This book is suitable for all Archimedes users who are interested in writing
multi-tasking Wimp-based programs for the computer. Some prior
knowledge of programmming in BBC Basic is assumed, as well as a
familiarity with the RISC OS Desktop from a user's point of view (clicking,
dragging, choosing menu options, opening and closing windows etc.).
However, one of the aims of the book is to show that simple and effective
Wimp programs can easily be written by non-expert programmers once the
basic principles of the interface are understood.

Wimp Programming for All will take you step by step through the
concepts and practicalities of Wimp programming in a clear and logical
fashion. The text is backed up at all stages by program listings designed to
illustrate the techniques being described. Each of these listings, when added
to the existing program as described in the book, will make up a complete
application which demonstrates the points being introduced in the text. All
these listings, together with the complete applications in each case, are
provided on the associated disc which is available separately. The text and
program examples in this book are equally applicable to both RISC OS 2
and RISC OS 3, unless specifically stated otherwise.

The programming language used for the examples given in the book is BBC
Basic, since this is widely used by programmers and, being available in the
computer from the moment it is switched on, provides an effective way to
harness the power of the Arc without expense or effort. However, the
techniques covered in the book are equally applicable to other languages
such as C or Assembler. C is especially suitable for programming the.--....,
Wimp; Acorn's implementation of Chas been optimised for that purpose,
with many Wimp-specific routines provided. Many commercial RISC OS

6

Introduction

applications are written in C, and readers who wish to write more
substantial Wimp-based programs are encouraged to investigate the use of
C to do so.

CONVENTIONS
All program listings in this book are displayed in the Courier typeface
(e .g. 5020 SYS "Hourglass_On"), and are taken from tested and
working programs. In the text, all Basic keywords are written wholly in
capitals (e.g. REPEAT, ELSE, TRUE), while references to certain keys on the
keyboard are given an initial capital letter (e.g. Return, Shift, Ctrl etc.) .
Italics are used to add emphasis to words, to distinguish menu items, icon
legends and the like from normal text, or to introduce a word which has a
specific meaning in the context of Wimp programming. This style is also
used for variable names, but only where they appear in normal text so that
they may be more readily identified in that context.

Two keyboard characters which sometimes cause confusion and which may
appear in program listings are underline (or underscore) and vertical bar.
The former is above the hyphen on the keyboard and appears in print as _
while the latter is on the key above Return and appears as I .

You should also be careful to differentiate in listings between 0 (zero) and o
(upper case 0), and between 1 (one) and 1 (lower case L). A further
common source of problems when typing in listings is failure to spot
multiple commas, particularly in SYS statements.

Wimp programming makes frequent use of blocks of memory for
parameter passing. In discussing the principles, the address of such a
memory area will be given in the style 'block', but in all program examples
the equivalent variable block% will be used as in the usual convention.

THE ASSOCIATED DISC
To accompany this book there is a separate disc containing all the program
fragments listed in the book, together with the complete applications which
are built up from these fragments, and additional supporting programs.

The disc may only be obtained direct from the publishers for £4.95 inc. VAT
plus £1 p&p. See Appendix E for more details of the contents of this disc.

7

Wimp Programming for All

FURTHER RESOURCES
A number of useful resources are available for the Wimp programmer.
Foremost among these is Acorn's Programmer's Referenc.e Manual (PRM). This
is really the Archimedes programmer's bible, since it details all aspects of
the operating system and how to access it from your own programs.
Acorn's open approach to this interaction between programmer and
machine contrasts very favourably with other computer systems where the
operating system is a closed book, understood only by a few dedicated
gurus. This willingness on the part of Acorn to document every aspect of its
operating system, and furthermore to make much of it accessible to other
programmers, is what makes the Archimedes such a delightful and flexible
computer to program.

The PRM, then, should be considered essential if you want to progress
beyond the basic concepts covered by this book. You will also find that
there are a number of useful programming utilities available from various
sources which will make life easier when writing your own programs, for
example to help you design the windows which your program will use, or
to aid in debugging when things go wrong. RISC Developments' Wimp
Programmer's Toolkit was compiled with this in mind, and contains a number
of powerful utilities which will be a great help to any Wimp programmer
(Appendix F gives details). Readers will find that a good text and program
editor (such as RISC Developments' DeskEdit) can also be invaluable in
writing and editing programs.

ACKNOWLEDGEMENTS
The basis for this book is Lee Calcraft's excellent series of articles entitled
Mastering the Wimp which appeared in RISC User magazine (from
September 1989 to May 1991). However, the original articles have been
greatly expanded and much new material has been added to ensure that this
book provides a complete solution for those who wish to get to grips with
programming the Wimp.

Alan Wrigley
October 1992

8

1. Introducing the Wimp

What is the Wimp? - Multi-tasking - Wimp applications - SWI calls - Outline of a Wimp
program - Application directories -An example program - Introduction to error handling

WHAT IS THE WIMP?
The first question asked by many newcomers to the Archimedes is "What
on earth is the Wimp"? Is there a weak little man inside the computer who
is programmed to do whatever you ask without complaint?

In fact WIMP is an acronym, originally standing for Windows, Icons, Mouse
and Pull-down menus, reflecting the fact that the earliest Wimp interfaces
featured menus which were "pulled down" with the mouse pointer from a
bar at the top of the screen. Nowadays WIMP is generally taken to stand for
Windows, Icons, Menus and Pointer, which in any case makes more sense
in the Archimedes environment since RISC OS menus may appear
anywhere on the screen and are not "pull-down" in nature.

When we speak of "the Wimp" in an Archimedes context, we are in fact
referring to the Acorn Window Manager, which is a resident module within
the RISC OS operating system. The Wimp is an example of what is known
as a Graphical User Interface (GUI). Broadly speaking, this means that the
information presented to the user about actions and options which are
available is represented in a graphical form, and may be selected by using
the mouse to point and click, as opposed to older style programs which
communicated by displaying text on the screen and expected the user in
turn to type text at a prompt to give the computer instructions.

The very name of the Wimp describes the kind of GUI which it is; a
program running under the Wimp uses windows on the screen, and icons
within these windows, to display information. An icon is simply a box of
any size containing text, a picture or both, which can be placed anywhere
within the window. The user interacts with the program by using the
mouse to move the pointer around the screen, and to click over specific
icons and/or windows to communicate with the program, while options
open to the user are available from menus.

9

Wimp Programming for All

The Acorn Wimp is a very powerful and comprehensive piece of software
available and accessible to all Archimedes users. Most importantly of all, it
provides the means by which full co-operative multi-tasking is achieved on
machines with RISC OS fitted .

MULTI-TASKING
The ability to multi-task is really the key to understanding why we should
want to learn to program the Wimp. Multi-tasking means quite simply that
more than one software application can be active in your computer at the
same time, and furthermore all these applications can not only share access
to resources such as filing systems and printers, but also transfer data ---.
directly between each other. If the Archimedes is your first computer you
may take this facility for granted, but until very recently the idea of multi­
tasking on a personal computer would have seemed like a dream to most
users.

This, then, is the prime reason for writing programs which make use of the
Wimp, since multi-tasking is not possible without it. But the Wimp also
greatly simplifies access to filing systems. If your program needs to operate
on data files, you do not need to write any code to find files or display
information about them, or move around the directory structure of disc or
network systems. The Desktop filer provides all this, and allows you to
drag data files into an application in order to load them - and much more
besides.

WIMP APPLICATIONS
In the three years or so since Acorn first introduced RISC OS, a bewildering
variety of applications have appeared on the market which make full use of
its facilities. Most importantly of all, hardly anyone now writes non-multi­
tasking programs for the Arc, a fact which in itself indicates how powerful
and all-embracing the concept of the Wimp has become. Almost anything a
computer can do is a candidate for a multi-tasking application, and it is
worth considering some typical examples of these at this point in order to
illustrate the range of what can be achieved, and perhaps to whet your
appetite for developing your own ideas.

At the bottom end of the scale, magazines regularly publish small Basic
programs contributed by readers which perform simple but useful tasks, for
example Desktop calculators, clocks, diaries and a whole host of other ideas. ,........._
All these are well within the scope of a relative newcomer to Wimp
programming, and all are ideally suited to multi-tasking operation.

10

Chapter 1: Introducing the Wimp

Higher up the ladder are commercial programs performing specific
operations which, on their own, may be of limited use, but when used in
conjunction with other applications running alongside them in the machine,
open up a world of possibilities which are impossible or difficult to achieve
on a single-tasking computer. For example, a graph plotter can accept data
input from one application, perhaps in the form of text, tum it into a
pictorial graph in any one of a number of formats, and output it into an art
package or a desktop publisher to form part of a larger document. Once
upon a time this would only have been possible by running the three
applications separately one by one, saving the data away to a file each time,
and then quitting so that the next application could be run. This would then
load the file in turn, process it and so on.

Applications multi-tasking on the
RISC OS Desktop

Along with these purely
software applications,
there are programs
which support hardware
devices, such as
scanners, digitisers and
sound samplers, all
producing resources
which can be used by
other applications while
running alongside them
in the multi-tasking
environment.

Finally, there are applications which perform a major task, and which may
interact with several other applications along the way, either to import or to
export data in any one of a number of different forms. We have already
mentioned art and desktop publishing packages; we could add
spreadsheets, databases, music packages and so on.

What this means for the average programmer is that programs do not have
to be large or complex to be of use. Provided that the guidelines laid down
by Acorn are closely followed (and this book will do its best to encourage
you to do so), small programs can have a vital role to play in the chain; with
multi-tasking it is no longer necessary for every program to re-invent the
wheel.

11

Wimp Programming for All

The only real disadvantage from the programmer's point of view is the
complexity of the Wimp, but this is really quite unavoidable in view of the
massive flexibility built into the system, as we will see in due course.
Indeed, in some cases the complexity of the system actually works to the
programmer's advantage. For example, if you were writing a program
without the Wimp, you would need to include routines to display text in the
correct place on the screen each time it is required, and to handle text typed
in by the user. The latter may involve filtering out unacceptable characters,
detecting the cursor being moved around the text and so on. But with the
Wimp, all you have to do is create a text icon, and the Wimp itself handles
text input and output to that icon automatically.

Furthermore, because every multi-tasking program must communicate
with the Wimp in the same way, there are a number of core routines which
can be common to all programs. Once you have written a "shell" program
containing these routines (for which Basic is a perfectly acceptable
language), this can be used as the basis for every multi-tasking program
you will ever write (in fact, the accompanying disc contains just such a set
of routines to help you get started). The point we are making is that
although the Wimp is complex, you need have no fears about learning to
program it, and once you have mastered the basics (which is the purpose of
this book), you will actually find programming easier than without it.

INTRODUCING THE WIMP
Because of the complexity of the Wimp, we will be treating the whole
subject in a progressive fashion, with the intention of spreading the
introduction of new concepts throughout the book. To make this possible,
we will gloss over a number of areas early on, returning to them at a later
date to fill in the gaps. Don't get disheartened if at first it all seems a little
daunting. If you re-read any sections which are unclear, and study the
program listings carefully and experiment with them, you will soon find
that programming the Wimp becomes second nature.

So let's now get down to brass tacks. Put very simply, a program which
wishes to multi-task must first register itself with the Wimp. It must create
any windows and icons which it needs for itself, load in any files containing
essential resources, and then for the rest of its life it must sit patiently in the
computer repeatedly asking the Wimp to tell it when the user has
performed an action which requires its attention. This might be clicking the
mouse over an icon or typing in some text, for example. To do this it must
strike up a dialogue with the Wimp. In due course we will see how to do all
of these things.

12

Chapter 1: Introducing the Wimp

SWI CALLS
Virtually all access to the Wimp is via so-called SWI calls. SWI stands for
Software Interrupt, and is the method by which calls are made to routines
inside the operating system or a module. SWI calls are made from Basic by
using the SYS command. The rest of this section will give some details on
how to use the SYS command; if you are already familiar with its use you
can move on to the section entitled "WIMP SWI CALLS".

Although some simple Basic programs make no recourse to SWI calls, there
are many operations which cannot be performed without their use. The
Wimp is a case in point, being accessed almost exclusively via such calls.
The Archimedes has a potential 16777216 such calls in its repertoire, though
only a relatively small number are actually defined. Each SWI call has an
identification number, and if you are in Basic, then each may also be
referred to by name. For example the two calls:

SYS "OS_WriteC"

and
SYS 0

are equivalent. Most SWI calls also require parameters to be passed, and
this is done by setting up the ARM processor's registers before making the
call. There are 15 such registers, normally referred to as RO-Rl5. If you were
writing in machine code, you would need to place the correct values into
the appropriate registers before making the SWI call, but Basie's SYS
command does it all for you at the time of making the call; all you have to
do is specify the parameters in the correct order, starting with RO, and
separated by commas, and they will be put into the correct registers. In
other words, the first parameter in the list will be passed in RO, and so on.

As an example, consider the SWI OS_WriteC which we have just met. The
effect of this call is to output a single character to the current VDU stream
(normally the screen). The character to be output must be supplied as a
parameter in RO. To output the letter A for example, you would write:

SYS "OS_WriteC",65

since 65 is the ASCII code for A.

Generally speaking it is always best to supply the SWI name rather than its
number, since this makes your code easier to follow. But if you are using the
name, it must be entered exactly as it appears, right down to the case of
each letter. If you entered the name as Os_WriteC you would get the error
No such SWI. You should also be careful with the underscore character used
in all SWI names. This is produced by pressing Shift together with the
minus key. Note also the vitally important comma separating the name and
the first parameter. If you miss this out a syntax error will be signalled.

13

Wimp Programming for All

In practice almost all SWI calls take one or more parameters. For example,
OS_Plot takes 3:

SYS "OS_Plot",4,100,200

This call would move the graphics cursor to point 100,200 (4 is the plot code
for maue absolute). Sometimes you will see that one or more parameters have
been omitted from a call by placing the separating commas adjacent to each
other. Usually this is done when the value in a particular register is not
relevant, but a value in a subsequent register is. When a value is not
specified, the operating system inserts a value of zero in the corresponding
ARM register.

In these examples the parameters we have passed are treated as four-byte
integer values, since each register can contain one four-byte word. But
sometimes it is necessary to pass a pointer to a string in one of the registers.
The SYS command handles this quite neatly for you. All you have to do is to
pass the actual string itself, or the name of the string, as the parameter, and
Basic will calculate the address of that string and pass it on with the SWI
call. For example, the SWI OS_ WriteN sends a string to the current output
stream. RO contains a pointer to the string while Rl contains the number of
bytes to send. This could be achieved in Basic in the following way:

text$="Hello world"
SYS "OS_ WriteN",text$,LEN(text$)

or simply:
SYS "OS_WriteN","Hello world",11

Sometimes when large quantities of information must be passed to a SWI
routine, a so-called parameter block is used. This happens with most Wimp
calls. In such cases, the user builds up a data block in RAM containing the
information needed by the SWI, and then passes the start address of the
block as one of the parameters of the call. For example, OS_Word with
R0=15 writes information to the computer's real-time clock. The
information must be placed into a parameter block, the address of which is
passed in Rl . So you would make the call in the following way:

SYS "0S_Word",15,block%

having first dimensioned an area of memory starting at block% and placed
into it the information required by the SWI routine.

SWI calls can also return information. OS_Mouse for example, returns the
pointer x and y co-ordinates, the state of the mouse buttons and the time of
button change, in the first four registers respectively. It might be used as
follows:

SYS "OS_Mouse" TO x%,y"-f.,button%,time%

14

Chapter 1: Introducing the Wimp

Here, as in all cases where no parameters are supplied, the comma after the
name may be omitted. After this call, the four variables following the
keyword TO will hold the values returned by the call. As with the
parameters supplied by the user, the return parameters reflect the contents
of ARM registers RO, Rl, R2 etc. And again, if a particular register in a
sequence is to be ignored, the comma separators can be moved together.
Thus the statement:

SYS "OS_Mouse" TO ,,button%

would still return the button state.

Finally, to illustrate how supplied and return parameters are used together,
the following OS_Byte call will read CMOS RAM location n%, and store
the result in the variable result%:

SYS "0S_Byte",161,n% TO ,,result%

Note the two commas before the variable result%, indicating that the value
returned in this variable should be the contents of ARM register R2 (RO and
Rl being discarded). To test this out, try it with n%=134. The variable
result% will return the size of the font cache (in units of 4K) configured in
your machine.

All SWI calls which are described in this book will be printed in bold type
wherever they appear. A list of all these calls is given in Appendix D. Full
details on all the operating system's SWI calls, including parameters for
each call, are given in the PRM.

WIMP SWI CALLS
RISC OS 2 has 52 Wimp SWI calls documented in the PRM, and RISC OS 3
has a total of 54. In the course of the book we will describe about half of
these (listed in Appendix D), but initially in the first three chapters we will
concentrate on just nine of the more common calls (see Figure 1.1).

Wimp_lnitialise
Wimp_CreateWindow
Wimp_OpenWindow
Wimp_CloseWindow
Wimp_GetWindowState

Figure 1.1

Wimp_Poll
Wimp_CloseDown
Wimp_ReportError
Wimp_ProcessKey

Some commonly used Wimp SWI calls

15

Wimp Programming for All

PARAMETER BLOCKS
As we mentioned earlier, most Wimp SWI calls require a parameter block, a
pointer to which is usually passed in Rl. For the majority of purposes the
same block can be used for each call (though there are a few circumstances
where it is necessary or advisable to use a different block, as we shall see).
The Wimp requires the main block to be at least 256 bytes long, and it may
need to be larger if it is going to be used to create a window whose
definition requires more than 256 bytes. It is usual to dimension this block
at the start of the program using the DIM statement, as in the following
example:

DIM block% 255
~

Basic will set up the variable block% (the name is determined by the user) to
point to a reserved area of 256 bytes. This would normally be done in a
procedure which performs all the necessary initialisation routines.

INITIALISING A TASK
In very broad terms, a Wimp program will begin by making a call to SWI
Wimp_Initialise. This informs the Wimp of the existence of the new task
(or program). The Wimp replies by issuing the task with a so-called task
handle. This is a number unique to that particular task, which may be used
when referring to the task in future dialogues. Figure 1.2 shows the details
of the parameters which should be passed to Wimp_Initialise, together
with the information returned by the call.

16

On Entry:
RO= Last Wimp version number ·100 (at lel st 200)
R1 ="TASK" {low byte="T''. high byte="K")
R2 = Pointer to description of task

<pn Exit:
RO= Current Wimp version number ·100
R1 =Task handle

Figure 1.2
Parameters for

SWI "Wimp_Initialise" (&400CO)

Chapter 1: Introducing the Wimp

RO should hold a value which represents the latest version of the Window
Manager known to the task (200 for RISC OS 2 and 300 for RISC OS 3), Rl
should hold the word TASK (literally - see below), while the third
parameter (in R2) supplies a brief description of the task for the Task
Manager display (for example, "Edit", "Paint" or "OurTask"). On exit RO
and R~ will hold respectively the version number of the Window Manager,
and the task handle which it has assigned to the task.

The parameter supplied to Rl by the user is a little unusual in that it is not a
pointer to a text string (as would normally be the case) but the text string
itself, which has a value (in hex) of &48534154. This is simply a little ruse to

........._, filter out tasks written for a pre-RISC OS version of the Window Manager,
which would be very unlikely to pass that particular value in Rl when
initialising.

Having made this call, the program may then perform any other necessary
initialisation procedures. This may include loading any data which it
requires at the outset, or creating windows for use in the program. We shall
see how to do the latter in the next chapter.

THE WIMP POLL LOOP
Having done everything necessary to set itself up, the program must then
enter a loop within which it repeatedly asks the Wimp for a progress report,
and the Wimp in turn tells it when an action has occurred which requires its
attention.

In all Wimp programs this loop must take the form of a central routine
which makes repeated calls to Wimp_Poll. We will cover the use of
Wimp_Poll fully in Chapter 3, but briefly, the Wimp responds to these calls
by returning a value, called the reason code, to the calling program (or task),
and the task in turn responds to this. The reason code indicates what kind of
action has occurred that requires the task's attention; perhaps the user has
clicked on an icon in the task's window, or has typed at the keyboard, or
whatever. In any case, it is up to the task to interpret the reason code, react
accordingly, and then call Wimp_Poll again to find out what to do next.

As far as the task is concerned, a call to Wimp_Poll simply invokes a
response at some point from the Wimp. Unbeknown to the task, however,
the Wimp uses this call to multi-task. What happens is that the Wimp
returns to each task in turn, so that in the time between a task calling
Wimp_Poll, and getting back a reason code, the Wimp has serviced each of
the other concurrent tasks one by one. This is all handled completely by the
Wimp, and all that each task must do is to call Wimp_Poll in a central

17

Wimp Programming for All

REPEAT loop, and to respond as quickly as possible to the reason code
which the Wimp returns. It must then call Wimp_Poll again, so passing
control back to the Window Manager. All Wimp programs must behave in
this way, and no special code over and above this is needed to accomplish
multi-tasking.

We can see, therefore, that multi-tasking works in the following way: your
task initialises itself, then calls Wimp_Poll and sits back to await further
instructions while other activities may be going on elsewhere in the
computer. When an action occurs which needs to be processed by your task,
the Wimp responds to your call and passes control to you. Your program
must then deal with the action as quickly as possible (during which time it
has sole control of the computer), and then pass control back to the Wimp.
At all other times the Wimp has no need to trouble your task, and will get
on with the job of servicing all the other active tasks in the same way. If you
find that this is all a little unclear at this stage it is worth re-reading the
above section until you have grasped it fully, since it is the key to the way
in which the whole process of multi-tasking operates.

TERMINATING A TASK
Each task will have its own way of determining when the user wishes to
quit (normally by providing a Quit option on the task's menu, selection of
which will be notified to the task by the Wimp). When this time comes, the
task must exit by calling Wimp_CloseDown which tells the Wimp that it
no longer wishes to be active. This call only requires parameters in
special cases, and for normal applications (such as those described in this
book) these are not necessary.

APPLICATION DIRECTORIES
Before we go on to bring all these concepts we have introduced so far into a
program for you to experiment with, we need to explain briefly the
structure of a Wimp application. If you are familiar with application
directories you may skip this and move on to the section entitled "A
SIMPLE PROGRAM".

When you open up a directory display on the Desktop, you may see a
variety of objects. There may be simple files, usually represented by square
icons with a black border; some of these icons will probably be familiar to
you, such as those for text or sprite files, for example. You may see
directories, represented by pale blue icons in the shape of a folder. There
may also be applications, which are characterised by the "!" in front of the
name (in Acorn terminology this character is referred to as "piing" rather

18

Chapter 1: Introducing the Wimp

A directory display containing files and applications

than "exclamation mark"), and usually also by their own individual icon.
What you are seeing is in fact an application directory, which RISC OS
distinguishes from a conventional directory by the "!" character as the initial
character of the name. The rest of the directory name usually reflects the
name of the application itself - Edit's application directory, for example, is
called !Edit. Incidentally, you should always refer to applications
themselves by their name, e.g. Edit, Ovation and so on. !Edit or !Ovation
should only be used when referring specifically to the application directory.

An application directory contains all the individual files and resources
needed by the application in order to run. A full description of these is
given in Appendix B, but for now you simply need to know that the main
program (i.e. the one which contains the code that performs the
application's functions) is always called !Runlmage, and that there must be
at least one other file in the application directory, which is an Obey file
called !Run. The reason for this latter file is that when you double-click on
an application directory (which is of course the standard method of running
an application), RISC OS looks inside the directory for a file called !Run, and
executes it. This process allows the application to set up various parameters
before the main program is run. For example, a common function of the
!Run file is to ask the Wimp to allocate a specific amount of memory to the
application. The last action of the !Run file is usually to run !Runlmage.
!Runlmage itself can be a Basic program, an ARM code program created
using C or Assembler, or indeed a program in any language which is
recognised by the computer.

19

Wimp Programming for All

From now on, we will assume that each time you type in a listing from this
book, you will save it as !Run!mage within an application directory. First of
all, you will need to create an application directory for this purpose. To do
this, simply choose the New directory option from a Filer menu, and type in a
name of your choice begi1ming with "!". We will adopt the name OurTask for
the application which we will build up throughout the book, so if you want
to follow this course you should create a directory called !OurTask.

You will notice two things about this directory. Firstly, the icon which
represents it is the standard pale blue and yellow "APP" icon. This is the
default icon for application directories. You can create your own sprite for
this icon to be' used in place of the default, and details are given in
Appendix B, but for the moment the default icon will do just as well.
Secondly, because double-clicking on an application directory runs the
applic<1tion, you cannot open the directory by this method as with other
direct<:ries. Instead, you must hold down Shift while double-clicking.

You musl also create a !Run file. The easiest way to do this is to use Edit and
choose tlte Create New Obei; file option from the icon bar menu. For the
moment this file need only contain two lines, as follows:

WimpSlot -min 32K -max 32K
Run <Obey$Dir>.!Runimage

Having typed in these two lines, open up the !OurTask directory as
described above and save the file inside it with the name !Run. The purpose
of these lines is explained more fully in Appendix B, but for now all you
need to know is that the WimpSlot command requests a specific allocation of
memory (in this case 32K), while the Run command runs the !Run!mage
program.

Now you have a skeleton application, and each time you create or modify a
program from one of the listings in the book, you can save it inside the
'OurTask directory as !Runlmage. Double-clicking on !OurTask will then run
the program.

A SIMPLE PROGRAM
To get you started without any further ado, Listing 1.1 contains a very
simple program for you to type in which illustrates the calls described so
far in this book. The program cannot really serve any useful purpose, since
we have not yet covered the creation of windows. All that it does, therefore,
is to initialise itself, call Wimp_Poll, generate an error the first time a
reason code is returned, and then close down immediately.

20

Chapter 1: Introducing the Wimp

In later chapters we will be building on this simple program as we go
along, adding routines to illustrate the various elements of a multi-tasking
program as they are described in the text. These routines can later be used
as a framework for developing your own Wimp programs. Because the
program will be regularly updated in this way, when you type in Listing
1.1, and all subsequent additions to this listing, you should adhere to the
line numbering given, since we may need to refer to some of these lines at a
later stage, and in any event many additional lines will eventually be
inserted into what is for now just a skeleton framework'..

Where program lines are given in the text, and are not part of a listing (i.e.
~ they do not appear under the heading of "Listing n.n") then they are

intended only as suggestions for you to experiment with, and subsequent
listings will not necessarily assume that they have been included as part of
the program.

When subsequent additions to the program are listed in the book, it may
not always be easy to see the purpose of the new lines when viewed out of
context with what is already in the program. For this reason, we
recommend that whenever you add lines to the program, you list that
whole section of the program in order to gain a better understanding of
what exactly is going on.

Listing 1.1

10 REM >!Runimage
20 REM Wimp test program "OurTask"
30 REM Updated to Chapter 1
60
70 PROCinit
80
90 WHILE NOT quit%

100 PROCpoll
110 ENDWHILE
120 SYS "Wimp_CloseDown"
130 END
140
150 DEF PROCinit
160 DIM block% 255
170 quit%=FALSE:app$="0urTask"
180 SYS "Wimp_Initialise",200,&4B534154,app$
480 ENDPROC

21

Wimp Programming for All

490
500 DEF PROCpoll
510 SYS "Wimp_Poll",0,block% TO reason%
520 CASE reason% OF
530 WHEN O:PROCerror("This program does nothing usefu

l")

540 quit%=TRUE
670 ENDCASE
680 ENDPROC
690
700 DEF PROCerror(err$)
730 !block%=255
740 $(block%+4)=err$+CHR$0
750 SYS "Wimp_ReportError",block%,1,app$
760 ENDPROC

Since tlus is our very first program, it is worth looking at in a little detail.
First of all PROCinit is called. It is usual for a program to have a procedure
such as this, which performs all the necessary initialisation functions before
Wimp_Poll is called for the first time. Line 160 reserves the block of
memory which we need for any SWI call parameters, and also sets up a
variable quit% which will be used to detect when the program should
terminate. In line 180 you will see the call to Wimp_Initialise, exactly as
described earlier. The program then enters the poll loop at line 90, and
repeatedly calls PROCpoll as long as quit% is still FALSE. Line 510 in
PROCpo/l makes the actual call to Wimp_Poll, returning the reason code in
reason%. The poll loop and reason codes will be described fully in Chapter 3,
but for the moment we will respond to only one reason code - code 0, which
means that nothing much has happened. As soon as our program receives
this code (which it is likely to do soon after initialisation), it calls PROCerror
(see below) with an error message passed as a parameter, and also sets
quit% to TRUE. This is picked up at the end of the loop in line 110 and so the
loop is terminated, leading on to lines 120-130 which call
Wimp_CloseDown and exit.

INTRODUCTION TO ERROR HANDLING
One fact about Wimp programming that has to be understood at an early
stage is that error handling is of the utmost importance. In a multi-tasking
environment it is just not acceptable for a program to crash the computer if
an error occurs, since other applications may have unsaved data which
would then be lost. The programmer must therefore be aware of potential

22

;

Chapter 1: Introducing the Wimp

errors and build in code which enables the program at best to handle the
error internally with minimum fuss, or at worst to exit in a dignified
fashion without disturbing other applications. For now, it is sufficient to
know that a SWI call, Wimp_ReportError, is provided specifically to deal
with errors under the Wimp. This displays a standard Wimp error box
containing the text of your choice. If you are not sure what these boxes look
like, the quickest way to see one is to generate an error deliberately by, for
example, clicking on a disc drive icon when there is no disc in the drive.

It is normal to place a program's error reporting routine in a separate
procedure, typically named PROC.error as we have done here, which is then
called when necessary from elsewhere in the program, with a string
parameter containing the text which you wish to display in the error box.

We will look at error handling and Wimp_ReportError in more detail in
Chapter 4, but we ought to explain what is actually happening in our
program. The call itself requires a pointer to a parameter block to be passed
in RO, a set of flags in Rl, and a task name or similar in R2 which will be
used in the error box title. The block must contain a four-byte word
containing the error number, followed by the text string to be displayed,
terminated by a zero byte. This is set up in line 740. Don't worry too much
at the moment about the error number to use - we have employed 255 here.
The flags byte is a little complex and will be described in Chapter 4, but the
value of 1 which we have used here means "include an OK icon". In other
words, when the error box is displayed, there will be an OK icon which
must be clicked on before the program can proceed. If we had used a value
of 3 instead, this would display both an OK and a Cancel icon.

You will hopefully have seen by now that the code required to get a
program to multi-task is quite trivial indeed. Nevertheless, we have some
way to go before our program does anything useful, and in Chapter 2 we
will take the next step on that road by describing how to create and open a
window. Before reading further, however, you may like to take time to
reflect on, and if necessary re-read this chapter, as it is important to
understand fully the concepts which lie behind the use of the Wimp. It is
certainly worthwhile typing in the program listed here and running it,
despite its rather limited and artificial function.

23

2. Windows

Introduction to windows - Creating a window - Example program - Window size - Scroll
offsets - Window colours - Window flags - Window title - Work area flags -
Miscellaneous window information - Opening and closing a window

In Chapter 1 we saw how to initialise and close down a task, and we also r'\
introduced the Wimp poll and error handling. It's now time to start tackling
the real meat of the Wimp, starting with the first letter of our acronym. We
must repeat our earlier statement that although the Wimp might appear
daunting at first, it is really quite straightforward once you get the hang of
it, so if there is anything in this chapter that you don't understand initially,
don't give up, but re-read it and experiment with the program listings until
you can see exactly what is going on.

INTRODUCTION TO WINDOWS
Figure 2.1 shows a typical window as it appears on the screen, while Figure
2.2 illustrates the constituent parts of the window. It is assumed that you
are familiar with the effects of clicking the mouse when the pointer is over
the various parts of the window. If not, switch on your machine, read your
User Guide, and find out!

Figure 2.1
A typical window on the Desktop

24

Chapter 2: Windows

Close icon Title bar Toggle size icon

\ I I
Back icon--- l--'l!l'-'-11-"-tl,_ l ____ T_lt_le _____ --+c--i'I

J_ - Scroll up icon

- Slider
Visible work area

- Vertical scroll bar

"i - Scroll down icon

~ I 1¢ l!l

/ / . / I '- Adjust size icon
Scroll left icon Horizontal scroll bar . .

Slider Scroll right icon

Figure2.2
Tit£ constituent parts of a window

The really excellent thing about the Acorn Wimp is that not only will it
place windows on the screen exactly where you want them, but it will fully
maintain them as well. For example, if you drag a window to a new
position on the screen, then the window manager will handle this for you.
Only if part of the window needs redrawing (as it would if it had previously
been obscured by another window) will your program need to do anything,
and in such cases the Wimp will tell you exactly which parts of the window
need updating, by issuing the appropriate reason code in response to a

,.-..._ Wimp poll. And even this is only necessary if your window contains user­
drawn graphics or text; if it contains only icons, then the Wimp will redraw
these for you too without any need for your program to be involved unless
you want the actual contents of the icon to be changed.

CREATING A WINDOW
Having set up a parameter block and called Wimp_Initialise, the next job a
task will usually undertake is to create a window (assuming that it needs
one, of course). In fact, it may want to create several windows to use for
various purposes, but for the moment we will keep it simple and assume
that the task requires just one main window to perform its function.

It does this by calling Wimp_CreateWindow. This call supplies the Wimp
with a large quantity of information about the window, including its size,
colouring, whether it has scroll bars, what icons it contains and so on. Since

25

Wimp Programming for All

there is far too much data for the available ARM registers, the information
is supplied in a parameter block, and the address of the block is itself passed
as a parameter in register Rl. On exit, the parameter block remains
unchanged, but RO contains the window handle. This is an identification
number assigned by the Wimp to this particular window, and is unique - no
two windows in existence at the same time will have the same number,
whichever task they belong to. The handle must be quoted whenever a call
is made subsequently to the Wimp which relates to that window. The way
in which this is done is clearly detailed in the description of each call.

26

block+O
4
8

12
16
20
24
28
32
33
34
35
36
37
38
39
40
44
48
52
56
60
64
68
70
72
84
88

Visible Area minimum x co-ordinate
Visible Area minimum y co-ordinate
Visible Area maximum x co-ordinate
Visible Area maximum y co-ordinate
Scroll x offset relative to Work Area origin
Scroll y offset relative to Work Area origin
Handle to open window behind or -1=top -2=bottom
Window flags
Title foreground and frame colour (&FF=no frame)
Title background colour
Work Area foreground colour
Work Area background colour (&FF=transparent)
Scroll bar outer colour
Scroll bar slider colour
Title background colour when input focus gained
Reserved (must be 0)
Work Area minimum x co-ordinate
Work Area minimum y co-ordinate
Work Area maximum x co-ordinate
Work Area maximum y co-ordinate
Title bar icon flags
Work Area flags
Sprite area control block pointer (+1 for Wimp sprite area)
Minimum width of window (0 to use title width)
Minimum height of window
Title data
No. of icons in initial definition
Icon blocks (32 bytes each)

Figure 2.3
Parameter block for SWI "Wimp_CreateWindow" (&400C1)

Chapter 2: Windows

Figure 2.3 gives the contents of the parameter block for
Wimp_CreateWindow. This may look rather daunting at first sight, but all
these parameters will be explained in the course of this chapter. By now,
you are probably itching to get a window of your own on the screen, so we
will leave a detailed description of Wimp_CreateWindow until later, and
introduce Listing 2.1, which will create and open a window for you. This
should be added to Listing 1.1 from the previous chapter - in other words,
you will be updating the !Runimage program for the OurTask application
which you should have already created.

Don't worry if there is anything in the listing you don't understand - all will
--... be revealed in due course. You will notice that the listing uses three further

SWI calls which have not been mentioned so far - Wimp_OpenWindow,
Wimp_CloseWindow and Wimp_GetWindowState. These will also be
described fully later.

In this and most subsequent updates to the program, some of the new lines
will replace existing lines of the same number. Where a blank line is shown,
this means that the existing line of that number must be deleted.

When run, the program places a
window on the screen, as illustrated
in Figure 2.4. This can be dragged,
scrolled or re-sized as required but
performs no other function . When
you click on the Close icon, the
window will close and the task will
terminate. We have kept things
simple for the moment in order to
illustrate only those concepts which
are relevant to this chapter.

Unfortunately it is necessary for
OurTask to respond to Wimp_Poll
reason codes before we are able to
explain them fully. This is
unavoidable since no Wimp
program can work without calling
Wimp_Poll. The polling routines
will be fully covered in the next
chapter. For now, you will just have
to take it on trust that the routine at
lines 500-680 does actually work.

Figure 2.4
Window created by Listing 2.1

27

Wimp Programming for All

Listing 2.1

28

30 REM Updated to Chapter 2
190 ON ERROR PROCerror(REPORT$+" at line "+STR$ERL):

SYS "Wimp_CloseDown":END
200 whandle%=FNcreate_window(200,200,300,500,200,200

440 !block%=whandle%
450 SYS "Wimp_GetwindowState",,block%
460 SYS "Wimp_Openwindow",,block%
530
540
550 WHEN 2:SYS "Wimp_OpenWindow",,block%
560 WHEN 3:SYS "Wimp_ Closewindow",,block%
570 quit%=TRUE

1000 DEF FNcreate_window(x%,y%,w%,h%,extx%,exty%)
1010
1020 REM visible work area
1030 !block%=x%
1040 block%!4=y%
1050 block%!8=x%+w%
1060 block%!12=y%+h%
1070
1080 REM scroll offsets
1090 block%!16=0
1100 block%!20=0
1110
1120 REM handle behind and window flags
1130 block%!24=-1
1140 block%!28=&FF000012
1150
1160 REM window colours
1170 block%?32=7
1180 block%?33=2
1190 block%?34=7
1200 block%?35=1
1210 block%?36=3
1220 block%?37=1
1230 block%?38=12
1240
1250 REM work area extent

Chapter 2: Windows

1260 block%!40=0
1270 block%!44=-h%-exty%
1280 block%!48=w%+extx%
1290 block%!52=0
1300
1310 REM title bar and work area flags
1320 block%!56=&19
1330 block%!60=3<<12
1340
1350 REM sprite area pointer and minimum size
1360 block%!64=0
1370 block%!68=0
1380
1390 REM window title
1400 $(block%+72)="Test Window"
1410
1420 REM number of icons
1430 block%! 84.=0
1440
1450 SYS "Wimp_Createwindow",,block% TO handle%
1460 =handle%
1470

PROGRAM DESCRIPTION
We will now describe in detail the calls which have been used, starting with
Wimp_CreateWindow. The information supplied with this call can be
broken down into several sections: window size, scroll offsets, window
colours, window flags and title bar information, plus one or two
miscellaneous pieces of data. In the program, the function FNcreate_window
is used to place all this information into the parameter block and to create
the window. Line 200 calls FNcreate_window and places the returned value in
the variable whandle% (this will be the window handle). Six parameters
must be supplied to the function, all of which relate to the window size, as
we shall see in just a moment.

Lines 1020-1430 of the function are concerned purely and simply with
setting up the parameter block, and will be described in detail below. To see
how this works you will need to be familiar with the ?, ! and $indirection
operators. These are described in Appendix A Finally, lines 1450-1460 make
the call to Wimp_CreateWindow and return the window handle.

29

Wimp Programming for All

WINDOW SIZE
The first two parameters to FNcreate_window (x% and y%) are the x and y co­
ordinates of the bottom left-hand comer of the visible part of the window
(relative to the graphics origin which is at the bottom left of the screen). The
next two (w% and h%) are the width and height of the visible part of the
window. All these values are quoted in standard OS graphics units (i.e. the
same units which are used for PLOT commands and so on). It is not
necessary for all of the window to be visible on the screen, and so the last
two parameters to the function determine the extent of the window, i.e. the
size of the hidden parts, which will only appear if the window is scrolled or
extended in size. extx% and exty% therefore represent the amount by which
the total extent of the window exceeds the visible part in the horizontal and ()
vertical directions respectively. The visible part of the window is known as
the visible area, and the total extent of the window, including the hidden
parts, is known as the work
area - see Figure 2.5.

Lines 1030-1060 place the
four co-ordinates of the
visible part of the window
(left x, bottom y, right x, and
top y respectively) into the
block. Lines 1260-1290 do the
same for the co-ordinates of
the entire extent of the
window - the work area.

In fact, although the visible
area is measured in standard
graphics units from the
bottom left-hand corner of
the screen, the work area co­
ordinates must be given
relative to the top left-hand
corner of the visible area. If

Archimedes screen area Vlsibl'e area

extyo/o

Figure 2.5
Simplified relationship between the visible

area and the work area

you look closely at lines 1260-1290 you can see how this works in practice.
Because we want the visible area and the work area to coincide at the top
left-hand corner, the left x and top y co-ordinates of the work area will be
the same as those of the visible area_. Relative to the visible area, then, they
are zero, and this is the value we have used (in block+40 and block+52). The
right x and bottom y co-ordinates of the work area, however, will extend
from the top left-hand corner of the visible area for a distance of w%+extx%
and h%+exty% respectively. In the case d the y co-ordinates, the values

30

Chapter 2: Windows

must be negative, since y values start at the bottom of the screen and
increase upwards. So if you look at the relevant lines in the listing:

1270 block%!44=-h%-exty%
1280 block%!48=w"~+extx%

you should be able to see how this works.

Don't worry too much about all this at the moment - for many simple
Wimp programs the relationship between the two sets of co-ordinates is
irrelevant since the work area and the visible area will be the same.
Furthermore, once the screen co-ordinates of the window have been entered
into the parameter block at the time of creation, many tasks have no further
need to worry about co-ordinates at all. Even this initial process can often
be done by trial and error - simply experiment with the co-ordinates you
supply in the block until the window appears to be the right size and shape
and in the right place. And as we shall see later in the book, there is an
application available from Acorn which takes all the hard work out of
designing windows.

For the moment at least, we will deal simply in terms of the six parameters
supplied to the function FNcreate_window. To reiterate, these are the x and y
co-ordinates of the bottom left-hand corner of the visible area, and its width
and height, and the additional width and height of the non-visible part of
the window (both of which could be zero, but in our example are not). We
have given scroll offsets of zero in our listing for the moment - this means
that the visible area will be at the top left of the work area. We will examine
the subject of scroll offsets shortly, but first you may like to experiment
with the figures supplied to FNcreate_window in line 200 to see the way in
which the various parameters relate to one another, and how altering one
or more of the figures will change the shape and/ or size of the window
displayed on the screen. For example, you could try the following
modifications, and see the effect these have on the size and shape of the
window, and on the scroll bars:

200 whandle%=FNcreate_window(200,200,800,200,0,0)

or:
200 whandle%=FNcreate_window(0,1024,600,600,10000,100

00)

MINIMUM WINDOW SIZE
By dragging the Adjust Size icon at the bottom right-hand corner of a
scrollable window the user can adjust the size of the visible area. The
minimum size possible is taken from the two 16-bit parameters at block+68
and block+70. If these are set to zero (as they are in line 1370 in Listing 2.1),

31

Wimp Programming for All

the minimum width is taken to be the width of the window's title string,
while the minimum height is the vertical space necessary for any scroll bars
and arrows. You can verify this by dragging the Adjust Size icon on the test
program. Try also supplying different minima. A line similar to the
following will do the trick:

1370 block%!68=300+400<<16

This line will place the value 300 at block+68, and 400 at block+70 - the
"<<16" at the end means shift the second value to the left by 16 bits. This is
necessary since although BBC Basic (as used on the Archimedes) has single­
byte and four-byte indirection operators ("?" and ''!''), it has no double-byte
equivalent. ~

SCROLL OFFSETS
At block+16 and block+20 of the parameter block, the x and y scroll offsets
must be supplied. These are 32-bit words giving the initial relationship
between the visible area and the work area; in other words the scroll offsets
determine which part of the total work area of the window is currently
visible. You can see this concept in operation each time you scroll a window
on the Desktop by clicking on the scroll arrow icons - as the scroll bar (and
hence the window's scroll offset) moves, the visible area changes. The two
offsets are usefully defined as the co-ordinates in the work area of that pixel
which is displayed at the top left-hand corner of the visible area.

Work area
origin (0,0)- -

Vertical scroll
offaet (e.g. ·200)

32

Horizontal scroll
offset (e.g. 100) -- Work area

Figure 2.6
Applying scroll offsets

In Listing 2.1, these two
offsets are left as zero (lines
1090-1100). This results in
the top left-hand corner of
the visible area coinciding
with the origin of the work
area, i.e. the top left-hand
corner. When you run the
program you will see this
confirmed by the position of
the scroll bars. The
horizontal one is at the
extreme left, and the
vertical one at the top of its
range.
Since the work area of our

Chapter 2: Windows

window is larger than the visible area, we could if we wanted supply
horizontal and/ or vertical scroll offsets in the parameter block. The x
offset must be positive, since you can only ever scroll to the right of the
work area origin, while the y offset must be negative, since you can only
ever scroll below the origin.

Thus if we were to supply a horizontal scroll offset of 100 (at block+ 16),
then the left-hand edge of the visible area would be 100 graphics units
from the left-hand edge of the work area (see Figure 2.6). Similarly, if we
set the vertical scroll offset (at block+20) to -200, the top of the visible area
will be 200 units below the top of the work area. The values 100 and -200
are of course just the starting values of the two scroll offsets . Both may be
adjusted to any value using the scroll bars. To experiment with this, you
could change lines 1090-1100 as follows:

1090 block%!16=100
1100 block%!20=-200

These modifications to the program will produce initial scroll offsets as
described above.

WINDOW COLOURS
Lines 1170-1230 establish the colours of the various parts of the window,
which are stored from block+32 to block+38. The values supplied are
single-byte, and correspond to the standard Wimp palette (see Figure 2.7).
Generally speaking it is desirable to adhere to the colour numbers we
have used in OurTask, as these have been chosen to conform with Acorn's
own guidelines about the appearance and functionality of Wimp
programs.

0-7 Linear grey scale (white=O, black=?)
8 Dark blue
9 Yellow

1 0 Light green
11 Red
12 Cream
13 Dark green
14 Orange
15 Light blue

Figure 2.7
16-colour Wimp palette

33

Wimp Programming for All

Acorn is very keen that programmers should stick to these guidelines to I'""'\
achieve conformity within the Desktop, and to present the user with an
interface which is intuitive to use and does not require common processes
to be re-learned each time a new package is encountered. However, in order
to gain an insight into the way the window parameters are set up, you
might like to experiment a little with different colours, just to prove that
this is not all fiction. For a really garish window, for example, you could try
altering some of the lines as follows:

1170 block%?32=11
1180 block%?33=10
1200 block%?35=14
1210 block%?36=7
1220 block%?37=15

WINDOW FLA.GS
Three of the 32-bit word parameters passed to Wimp_CreateWindow
contain sets of flags which determine the properties of the window created.
A flag may be considered as a variable which has just two possible values.
For example, the flag which determines whether the window has vertical
scroll bars or not can obviously only take one of two values. Wimp flags are
each represented by a single bit of a given 32-bit parameter word - each bit
taking the value 1 (set) or 0 (unset). Bit 0 is the least significant bit of the
word, while bit 31 is the most significant.

The most complex of these sets of flags is the Window Flags group, situated
at block+28. Figure 2.8 shows the function of each. As is the case with so
many aspects of the Wimp, there is a lot of detail to be mastered, but much
of it will lose its mystique as you experiment and see exactly how it all
relates to the visual appearance of the window.

In the OurTask program, the window flags are supplied as a single 32-bit
hex value (line 1140), which in this case is &FF000012 (it is normal practice
to supply the figure in hex in this way). Because it is tedious to calculate
such values for each window that you generate, and because the use of a
separate variable for each flag would be cumbersome, Listing 2.2 at the end
of this chapter is provided as a shortcut. When you run this program it
takes you through all the features covered by the window flags, requesting
a yes/no response for each. At the end it prints out a single 32-bit hex value
for the window flags, to be used at block+28 when you are creating the
window. The value obtained may be substituted at line 1140 of Listing 2.1. '
The meaning of each flag is largely self-explanatory, but one or two are
more obscure, and some further explanation is necessary.

34

'·

0
1
2
3
4

5
6
7
8
9

10
11
12
13-15
16-20
21-23
24
25
26
27
28
29
30
31

Unused
Window can be dragged
Unused
Unused

Chapter 2: Windows

Wimp can redraw window on its own without help from task
(i.e. no user graphics)
Window is a pane (on a tool window)
Window can extend outside screen area
Unused
Generate scroll request events
As 8 but no auto repeat on arrow icons
Treat window colours as GCOL rather than Wimp colours
Don't allow windows below this one
Generate key-pressed reason codes for hot keys
Reserved - must be zero
Used to return info only
Reserved - must be zero
Window has a Back icon
Window has a Close icon
Window has a title bar
Window has a Toggle Size icon
Window has a vertical scroll bar
Window has an Adjust Size icon
Window has a horizontal scroll bar

Must be set (i.e. 1)

Figure 2.8
Window flags (at block%+28)

(flags marked "unused" were used in an earlier
version of the window manager, and are now obsolete)

Flag 4 should only be set if the window does not contain elements such as
graphics which the Wimp cannot update automatically when redrawing the
window. In other words, set this bit if the Wimp needs no help from the
task in redrawing the window. Our window does not yet contain any
graphics, so this bit must be set for the moment in our program.

Flag 5 is only set if the window is a very special kind - a so-called pane like
·~ the toolbox window attached to the left-hand edge of a Draw window. For

most purposes it is not necessary to worry about this bit, and in our
program we have left it unset.

35

Wimp Programming for All

Flags 8 and 9 are only set if the task needs to know when the user has
performed a scroll request (e.g. by clicking on a scroll arrow icon or
dragging a scroll bar). For most purposes it is unnecessary to set these bits
since the Wimp will handle the process of scrolling the window on its own
if they are unset, but occasionally a task may want to know that a scroll has
been requested so that it can perform some action (perhaps to increment a
line count to show the position in a document), or it may want to set the
new scroll offset to a value determined by the task itself. As an example, a
text editor may want to ensure that the top or bottom of the visible area
always coincides with the start of a line of text - Edit does this when you
scroll up and down through a docwnent, for example.

Flag 10 determines how colour is handled. There are two possible palettes
that a window can use, the ordinary GCOL palette allowing up to 255
colours (i.e. colours 0-254; 255 cannot be used because the value 255 is used
as a flag), or the more restricted Wimp palette. Unless there are compelling
reasons to do otherwise, you should keep to the Wimp palette. Flag 10 is set
if you are using GCOL colours.

Flag 12 is known as the "hot keys" flag. It is only set if the task wishes to be
notified when the user presses a key which is not subsequently claimed by
any other task. Normally, all key presses are sent first to the task which
currently owns the caret. If that task does not wish to process that particular
key, it is then passed in turn to any other tasks which have windows open
with the hot keys flag set. This facility is often used to implement functions
which can be accessed at any time with a single key press, irrespective of
the position of the caret or the pointer (for example to dump the current
screen to disc as a sprite, or to open a commonly-used directory on a disc). ---,
This is known as a "hot keys" facility; hence the name of the flag. An
obvious example is the use of function key F12 by the Task Manager to
access the command line. For the moment, our program will not make use
of the hot keys facility.

The only flags which are worth experimenting with at this stage are 1, 6 and
24-30. Try a value of &FFOOOOlO (i.e. bit 1 unset) and see what happens
when you try to drag the window. Then try &FF000052 (bit 6 set) and see
what happens when you drag the window to the edge of the screen. Other
flag settings you could try are &8F000012, &D6000012 or &80000010. See if
you can work out why they have the effect they do, but be warned - if you
use the last of these (&80000010) you will need to reset the computer with
Ctrl-Break in order to quit the application and remove the window from the
screen. It should not be too difficult to see why this is so.

36

Chapter 2: Windows

WINDOW TITLE
The title of the window may be displayed in the standard system font or in
anti-aliased text, or it may even be a sprite. In any case it must fit between
the horizontal bounding lines of the title bar at the top of the window. The
Title Bar Flags, which define the nature of the title, are placed as a 32-bit
value in the parameter block at block+56, and the details of the text (or of
the sprite) are passed at block+72 upwards. We will start by looking at the
flags, but to keep things simple
we will only list those which you
are likely to use when setting up
short text-based titles in the
system font (see Figure 2.9),
since it is quite rare for window
title bars to use either sprites or
anti-aliased text (the latter
requires a much longer time to
be redrawn and therefore slows
down the process of updating
windows quite considerably).

0
3
4
9

Icon contains text
Contents are centred horizontally
Contents are centred vertically
Text is right justified

Figure2.9
Selected title bar flags

For a simple text title, there is very little work to do. To give horizontally
and vertically centred system font text the flag should have a binary value
of 11001 (&19 hex). As for the title string itself, in its simplest form, which
we shall use here, it is placed as a text string at block+72 onwards. Using
this method, it must be of no more than 12 characters, and must be
terminated by the addition of a control character (e.g. ASCII 0 or ASCII 13)
if it is less than 12 characters in length. This is achieved in line 1400 of
Listing 2.1:

1400 $(block%+72)="Test window"
The control character ASCII 13 is automatically placed at the end of the
string by the $operator.

WORK AREA FLAGS
The final set of flags used by Wimp_CreateWindow are the Work Area
Flags. These are concerned solely with the response of the Wimp to the
mouse. Although the whole of the 32-bit word at block+60 is set aside for
this purpose, only bits 12-15 are used. Figure 2.10 gives the possible values
which these four bits may take. It is important to note that in contrast to the
other sets of flags the 4 bits here are treated as a single 4-bit word which can
take one of 16 unique and mutually exclusive values (i.e. any integer in the
range 0-15).

37

Wimp Programming for All

0 Ignore all clicks
1 Notify task continually while pointer is over work area
2 Click notifies task (auto-repeat)
3 Click notifies task (once only)
4 Release over work area notifies task
5 Double-click notifies task
6 As 3 but can also drag (returns button state*16)
7 As 4 but can also drag (returns button state*16)
8 As 5 but can also drag (returns button state*16)
~ As 3

10 Click returns button state*256
Drag returns button state*16
Double-click returns button state* 1

11 Click returns button state
Drag returns button state*16

12-14 Reserved
15 Mouse clicks cause window to gain input focus

(e.g. for text entry)

Figure 2.10
Work Area Flags (integer values)

The term "button state" indicates which of the mouse buttons is being used
to generate the click when it is reported to the task. A different value is
returned for each button, and this can be used by the task to determine
whether the user wishes to open a menu, activate a process or whatever, in
accordance with the standard conventions for using each of the three
buttons.

Because we are putting a 4-bit integer value into this flag word starting at
bit 12, we must shift the value 12 bits to the left. This is done by using the
shift operator that we met earlier:

block"~!60=va1%<<12

where val% is the integer value taken from the list in Figure 2.10. In Listing
2.1 we have used a value of 3 (i.e. Click notifies task), and so we have stored
3«12 (i.e. &3000) at block+60 in line 1330. The exact value chosen for the
task will appear more relevant when we begin to look at Wimp_Poll in the
next chapter. This is because the setting of the work area flags will
determine how the Wimp responds to our poll requests.

38

Chapter 2: Windows

MISCELLANEOUS WINDOW INFORMATION
There are still a few loose ends to be tied up in our description of the
window parameter block. You will see in Listing 2.1 that line 1130 supplies
a parameter entitled "handle behind". This tells the Wimp where in the
stack of windows visible on the screen we want ours to appear. A specific
window handle can be supplied, in which case ours will be opened
immediately behind it, or we can supply a value of -1 (top of stack) or -2
(bottom of stack). Normally we want our window to be opened on top of
any which are already there, so it is usual to supply a value of -l, as here.

At block+64 (line 1360) we can insert a pointer to a sprite area, in case our
window or its icons use sprites. We will look at this further when we deal
with icons, but for the moment we can leave this value as zero.

Finally, at block+84 (line 1430) we must insert the number of icons which
are being defined within the window block (the icon definitions if present
start at block+88 and require 32 bytes each). We have not concerned
ourselves with icons yet, and so this value can also be left as zero for now.

OPENING A WINDOW
In case you're tempted to imagine that all this elaborate complexity we
have just described will now put a window on the screen, it won't! It merely
defines the window for subsequent use, and in order to open it we must
make a further call to the Wimp, which is Wimp_OpenWindow. This also
requires a parameter block, the details of which are shown in Figure 2.11.
You will see that each time the window is opened (which may be at the
explicit command of the program or it may be in response to a request from
the Wimp when the user has dragged or re-sized the window), the co­
ordinates, scroll offsets and window flags must again be ::;pecified.

block+O
4
8

12
16
20
24
28

32

Window handle
Visible Area minimum x co-ordinate
Visible Area minimum y co-ordinate
Visible Area maximum x co-ordinate
Visible Area maximum y co-ordinate
Scroll x offset relative to Work Area origin
Scroll y offset relative to Work Area origin
Handle to open window behind
(or -1 if top of stack, -2 if bottom)
Window flags

-------~

Figure 2.11
Parameter block for SWI "Wimp_Ope11Wi11dow" (&400C5)

39

Wimp Programming for All

Before you throw up your hands in horror, however, things are not as black
a.s they look. Fortunately there is in either case a shortcut which avoids the
need to calculate all these values yet again. In the case of requests from the
Wimp, the block is actually set up for you, so all you have to do is call
Wimp_OpenWindow safe in the knowledge that all the information is
already there (as in line 550). In cases where you want to open the window
yourself (for example when the program is first run), there is another call,
Wimp_GetWindowState (&400CB), which can obtain the values for you.
This call returns the parameter block you need for Wimp_OpenWindow,
containing the values which were current last time the window was opened
or created.

You can see all this in action in Listing 2.1. Once the window has been
created, lines 450-460 call Wimp_GetWindowState followed by
Wimp_OpenWindow. This places the window on the screen at the co­
ordinates which were specified when the window was created. As an
experiment, try removing line 450 and see what happens when you run the
program - you will most likely get a funny-shaped window which looks
nothing like the one you expected.

Subsequent openings of the window are done in line 550 in response to a
request from the Wimp, and here the call is made without any further ado
since the correct data is already in the block.

CLOSING A WINDOW
One further call needs to be considered in this chapter:
Wimp_CloseWindow (&400C6). As you might expect, you should make
this call whenever you wish to close a window. Often this will be a
response to the Wimp after the user has clicked on the window's Close icon.
The only parameter required is the window handle in block+O, and the
block address is passed in RI as usual. If the call is made in response to a
request from the Wimp then the window handle will already be in the
correct position in the block. In Listing 2.1 we have arranged for the task to
terminate if the window is closed (by setting quit% to TRUE in line 570).
Strictly speaking it is not necessary to close windows before terminating a
task, since the Wimp will automatically close any open windows in these
circumstances, but we have done so here to illustrate the use of the call.

We have covered a lot of ground in this chapter, and if your head is still
reeling from all this complex information, do please re-read any sections
which are unclear, and experiment with the program until you can see what
is happening. In the next chapter we will look at Wimp_Poll in detail.

40

--

Chapter 2: Windows

Listing 2.2

10 REM >Flagset
20 REM by Lee Calcraft
30 REM Generates window flag values
40
50 MODE 12
60 flag%=1<<3l:REM set top bit
70 PRINT"WIMP WINDOW FLAG GENERATOR"
80 PRINT'"Generates 32-bit window flag for use with

Wimp_CreateWindow"
("°""\ 90 PRINT' "Respond with Y (=YES) or any other key (=N

0) II

100 PRINT"to questions below about the window you are
creating"'

110 REPEAT
120 READ A%,A$
130 IF A%<255 THEN
140 PRINTA$;" (bit ";A%;")";TAB(44)"Y/N? ";
150 B%=GET AND &DF
160 B%=-(B%=ASC"Y")
170 IF B% THEN PRINT"Y" ELSE PRINT"N"
180 flag"/o+=B%<<A%
190 ENDIF
200 UNTIL A%=255
210 PRINT'"Window flag= &";-flag%
220 END

230
240 DATA l,Draggable,4,Can be updated entirely by Wim

p
250 DATA 5,Pane,6,Extend beyond screen
260 DATA 8,Scroll event (with auto rpt)
270 DATA 9,Scroll event (with no repeat)
280 DATA 10,GCOL (=not Wimp colours)
290 DATA 11,Windows below prohibited
300 DATA 12,Hot key events
310 DATA 24,Back icon,25,Close icon
320 DATA 26,Title bar,27,Toggle size
330 DATA 28,Vertical scroll,30,Horizontal scroll
340 DATA 29,Adjust size icon,255,

41

3. The Wimp Poll
The poll loop - Example program - Null reason codes - Requests to open or close a
window - Pointer over window - Mouse clicks - Key presses - Masking events

THE POLL LOOP
The Wimp poll loop is central to the operation of any Wimp task, and is the
means by which the task responds to external events, such as a click of the \
mouse, a character typed at the keyboard, or even just the fact that the
pointer has moved over one of the task's windows. If you look back at
Listing 2.1 in the last chapter you will see that the procedure in OurTask
which deals with this vital operation is PROCpoll (lines 500-680). These lines
as they stand at present are repeated in Figure 3.1.

500 DEF PROCpoll
510 SYS "Wimp_Poll",0,block% TO reason%
520 CASE reason% OF
550 WHEN 2:SYS "Wimp_Openwindow",,block%
560 WHEN 3:SYS "Wimp_CloseWindow",,block%
570 quit%=TRUE
670 ENDCASE
680 ENDPROC

Figure 3.1
The Wimp poll loop from Chapter 2

While any task is operative, a segment of code of this kind must be
repeatedly called. In due course the Wimp will return a so-called reason code
to the task (in our program it is returned to the variable reason%), and the
CASE statement in the procedure responds to this in varioui,ways. So far
our program has only responded to reason codes 2 and 3, but_yie full range
of codes is currently from 0-19 and these are shown in Figure 3:2 (RISC OS 3
recognises an additional reason code, number 13, but we will not be using
this in our demonstration listings). As soon as it has responded, the)
program calls PROCpoll (and hence Wimp_Poll) again, and waits for a new
reason code to come back.

42

Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14-16
17
18
19

Chapter 3: The Wimp Poll

Event

Null Reason_Code
Redraw_ Window_Request
Open_ Window_Request
Close_Window_Request
Pointer _Leaving_ Window
Pointer _Entering_ Window
Mouse_ Click
User_Drag_Box
Key _pressed
Menu_ Selection
Scroll_ Request
Lose_Caret
Gain_ Caret
PollWord_NonZero {RISC OS 3 only)
Reserved
User_Message
User _Message_Recorded
User _Message_Acknowledge

Figure3.2
Reason codes returned by SWI "Wimp_Poll" (&400C7)

In the time between receiving the poll request from our task, and returning
a reason code to it, the Wimp will service each of the other active tasks in
turn. In this way the Wimp performs what is known as co-operative multi­
tasking. It is called co-operative since it relies on each task being well
behaved, and not delaying too long between receiving a reason code and re­
polling the Wimp (there is another kind of multi-tasking which is
implemented on some other computer systems called pre-emptive multi­
tasking, in which each task is allocated a strict time slice in rotation).

The most widely used reason codes are those from 0-3, 6-9 and 17-19,
though many applications may need to respond to some or all of the others.
Listing 3.1 given below is intended to be added to the OurTask program,
which then provides a set of routines to respond to reason codes 0, 2-6 and 8.
Some of the other reason codes will be introduced in later chapters as
appropriate. In all cases except code 0, the Wimp returns relevant
information in the parameter block.

43

Wimp Programming for All

Listing3.1

30 REM Updated to Chapter 3
165 count%=0
530 WHEN O:VDU4:PRINTTAB(0,0)count%:VDU5:count%+=1
580 WHEN 4:SOUND 1,-10,80,4
590 WHEN 5:SOUND 1,-10,200,4
600 WHEN 6:PROCclick(block%18)
620 WHEN 8:PROCkeypress(block%!24)

1140 block%!28=&FF001012
1500 DEF PROCclick(button%)
1510 CASE button% OF
1520 WHEN l:a$s"Adjust"
1530 WHEN 2:a$="Menu"
1540 WHEN 4:a$="Select"
1550 ENDCASE
1560 PROCerror("You have clicked the "+a$+" button")
1680 ENDPROC
1690
1700 DEF PROCkeypress(key%)
1710 CASE TRUE OF
1720 WHEN key%<>&1CC
1730 PROCerror("You have pressed a key - ASCII code "

+STR$key%+" (hex &"+STR$-key%+") ")
1740 OTHERWISE:SYS 11Wimp_ProcessKey11 ,key%
1750 ENDCASE
1880 ENDPROC
1890

POLL REASON CODES IN DETAIL
You will notice that the CASE statement in the poll loop has now been
enlarged to take account of the additional reason codes to which we want to
respond. We will now describe in turn each of the reason codes recognised
by OurTask. You may find it instructive before reading any further to try to
work out for yourself what the program will do, by referring to Figure 3.2
and matching the reason codes listed there with the WHEN statements in
the poll loop. If you have typed the program in, you can try out your
theories by performing various actions and seeing whether the results are
what you expect.

44

Chapter 3: The Wimp Poll

NULL CODES
For most of the time the reason code returned by the Wimp will be zero,
indicating that nothing is happening that requires any action from the task.
You may be wondering why the task ever needs to receive this null reason
code; after all, we said earlier that the Wimp only troubles your task when
some processing is required in response to an external action by the user.
But there are some applications which may want to perform background
activities, such as printing a document or updating a dock for example. It
would be inconvenient to expect the user to dick continually with the
mouse to communicate with the task and keep the background operation
going, and so these applications will make use of the null reason code to
perform a small part of the operation before passing control back to the
Wimp. In other words, they are saying to the Wimp "Tell me when nothing
is happening and I can do a bit of my work in the slack period". Tasks
which do not need to act on null reason codes can tell the Wimp not to
bother to report them, as we will see shortly.

OurTask responds to null reason codes in line 530. This simply prints an
incremented value (held in count%) in the top left-hand corner of the screen
each time the program receives a null code. When you run the program,
you will see the value displayed on the screen increasing all the time as
long as there is nothing much else happening. You should note that Wimp
tasks do not normally write directly to the screen like this; after all, the
whole point of a multi-tasking Wimp environment is that each task should
restrict its display to its own windows. We have done it here only because it
is a simple way to illustrate a response to null reason codes, and we shall
remove this section of code in the next chapter. In the meantime, don't take
this as an indication of how to display information in a window - we will
show you how to do this later.

REQUESTS TO OPEN OR CLOSE A WINDOW
When you drag a window around the screen, or scroll or re-size it, reason
code 2 will be returned by the Wimp (a window needs opening or re­
opening). Our program responds to this in line 550 by calling
Wimp_OpenWindow. As we saw in the previous chapter, the Wimp
returns a parameter block giving the parameters of the window to be re­
opened. If you omit line 550 you will find that the window will not move
when you try to drag it around.

If the window operation results in no new part of the window being
revealed, then the Wimp re-opens the window on its own. If on the other
hand it causes a previously obscured part of the window to be uncovered,

45

Wimp Programming for All

the Wimp then looks at window flag 4. If this is set (meaning that no help
from the task is necessary), the Wimp goes ahead and updates the window
and any icons that need redrawing. If, however, the flag is unset (meaning
that the window contains text or graphics which the Wimp cannot generate
without help from the application), then the Wimp will next return reason
code 1 (redraw window request). The task must respond to this
immediately by redrawing the window, but it needs to do this in a special
way, which will be covered in detail in Chapter 7. OurTask has for the
moment set flag 4 (in line 1140 when the window was created), and so the
program does not need to respond to reason code 1 since this will never be
returned.

Reason code 3 (request to close window) is returned if the user clicks on a
window's Close icon. The only information needed in this case is the
window handle, which is returned in block+O ready for the task to call
Wimp _Close Window.

POINTER OVER WINDOW

--....

When you move the pointer into a window which belongs to our task,
reason code 5 is generated (pointer entering window). If the pointer leaves
the window, then reason code 4 is returned (pointer leaving window).
These two codes return simply the window handle in block+O, and OurTask
deals with them in lines 580 and 590. When the pointer enters the window a
high-pitched sound is generated, followed by a low-pitched sound when the
pointer leaves the window. Since our task only has one window, we do not
need to check the returned window handle since there is only one
possibility. If we had more than one window, however, we might need to
add code to read the handle from the block and perform the necessary ---..
actions according to the result.

Many tasks have no need to respond to these two reason codes, since the
Wimp will always tell you anyway which window and/ or icon is involved
when it reports a click or a keypress. But sometimes an application may
want to know exactly when the pointer is over its window, perhaps to
change the pointer shape, or to calculate its co-ordinates.

MOUSE CLICKS
If you click the mouse when the pointer is over the visible area of your
window, reason code 6 is returned, together with a block of information
which is detailed in Figure 3.3. Note that details of the pointer co-ordinates
and button state are included, and we use these values rather than
employing the Basic MOUSE function.

46

The mouse x and y co­
ordinates (if we need them)
are given as absolute screen
co-ordinates rather than
relative to the task window
(i.e. with the origin at the
bottom left-hand comer of
the screen). The value for
the mouse button state at
block+8 will depend to a
certain extent on the
window's work area flags.
Generally speaking the
value will be 1 for a click
with Adjust, 2 for a click

block+O
4
8

12

16

Chapter 3: The Wimp Poll

Mouse x co-ordinate
Mouse y co-ordinate
Button state
Window handle
(or -1 for background

-2 tor icon bar)
icon handle
(or -1 for work area background)

Figure3.3
Information block returned by reason code 6

(Mouse_ Click)

with Menu, and 4 for a click with Select. However, as you may remember
from our discussion of the work area flags in Chapter 2, it is possible to set
the work area button type such that drags and/or double-clicks are also
reported.

For example, if you have set the button type to 6, then if Select is clicked in
the window and held down long enough to start a drag, the button value
returned will be 64 (if you can't see why this should be, re-read this
paragraph carefully and study Figure 2.10 in the last chapter). You will
remember that OurTask set the work area flag to 3: Click 1Wtifies task (once
only). The task will therefore be informed each time the mouse is clicked
within the window, but with no auto-repeat action. The values returned at
block+8 will therefore be 1, 2 or 4 as described above.

You will see that the Wimp also returns the window handle (at block+l2).
This is vital if a task is using more than one window, since it will need to
know which of its windows is involved with the event. If the window
contains icons, it is also quite likely that you will need to know which icon
was under the pointer at the time of the click, and this information is also
returned at block+ 16. We will be covering icons in detail in Chapter 5, and
we will have more to say about responding to clicks over them in that
chapter.

When you click with the mouse over OurTask's window, an error box will
be displayed telling you which button has been used. PROCclick in lines
1500-1680 performs this action. Strictly speaking this is not an error, of
course, but we have used this method here as a simple means of displaying
a message on the screen without a lot of additional code.

47

Wimp Programming for All

KEY PRESSES
The only other reason code that we shall deal with at present is code 8 (a
key has been pressed). Your task will only receive this code if one of your
windows either currently owns the caret or has had its hot keys flag set. The
caret is the vertical cursor which appears in writable icons and editor
windows to mark the current typing position. Again, a block of information
is returned, as shown in Figure 3.4. OurTask has no provision for handling
the caret at present, and so we must set the hot keys bit in order to
demonstrate the use of reason code 8. To do this we need to alter the value
at line 1140, and Listing 3.1 when added to the earlier listing will do this
automatically. PROCkeypress handles the program's response to key presses,
generating an error box showing the ASCII value of the key pressed.

block+O
4
8

12

16
20
24

window handle with input focus
Icon handle (-1 if none}
x-offset of caret
(relative to window origin}
y-offset of caret
(relative to window origin}
caret height and flags
index of caret into string
character code of key pressed
(4-byte word}

Figure 3.4
Information block returned by reason code 8

(Key_Pressed)

The information at block+8, 12, 16 & 20 enables the application to work out)
exactly where the caret was when the key was pressed, but we don't need to
worry about the details of this at this stage. However, there are three
important things you need to note when responding to this reason code.
Firstly, if the caret is visible on the Desktop (for example in a writable icon
or an Edit window), key presses will be offered first to the application
which owns the caret. This means that OurTask may not get a chance to
respond to them at all.

Secondly, because the Archimedes uses a full character set, including
characters 128-255 (the so-called "top bit set" characters), the Wimp cannot
return function keys and other special keys as single-byte values for the
obvious reason of potential ambiguity. Instead it returns them as double­
byte values with the high byte set to 1 (i.e. hexadecimal values above &100).
Figure 3.5 shows the values which are returned by the special keys.

48

Chapter 3: The Wimp Poll

Key Alone +Shift +Ctrl +Shitt-Ctrl

Escape &18 &18 &18 &18
Print (FO) &180 &190 &1AO &180
F1-F9 &181-189 &191-199 &1A1-1A9 &181-189
Tab &18A &19A &1AA &18A
Copy &188 &198 &1A8 &188
Left arrow &18C &19C &1AC &18C
Right arrow &18D &19D &1AD &18D
Down arrow &18E &19E &1AE &18E
Up arrow &18F &19F &1AF &18F
Page Down &19E &18E &18E &1AE
Page Up &19F &18F &18F &1AF
F10-F12 &1CA-1CC &1DA-1DC &1 EA-1 EC &1FA-1FC
Insert &1CD &1DD &1ED &1FD

Figure 3.5
Values returned by the Wimp for special keys

Thirdly, note line 1740 which makes a call to another SWI,
Wimp_ProcessKey (&4000C). Any application which responds to reason
code 8 must make this call if it receives a key press which it does not
recognise or does not wish to process. The SWI takes just one parameter in
RO, which is the ASCII code of the key. This must be done so that other
applications can be given the chance to act on the information. As a clear
example of this, you will be aware that pressing function key F12 from the
Desktop should always invoke the command line (and as a result no
application may use this key for its own purposes). If your task intercepts
key presses but does not pass on unrecognised keys, then pressing F12 will
have no effect at all as long as your task is in a position to respond to this
reason code.

Because our program is merely a test program to indicate which key has
been pressed, we are intercepting all key presses except Fl2, and the way
the procedure is actually coded is not typical. Normally, however, you
would only want to process a few particular keys, such as carriage returns,
cursor keys and so on. The structure of your procedure would usually look
something like this:

CASE key% OF
WHEN 13:PROCdo_something
WHEN &181:PROCdo_ something_else
WHEN
OTHERWISE:SYS 11 Wimp_ProcessKey 11 ,key%
ENDCASE

49

Wimp Programming for All

MASKING EVENTS
We saw earlier that the circumstances under which reason code 6 is
returned depend on the work area flags for the corresponding window, but
there is another factor which determines exactly which reason codes are
returned by the Wimp to each task. The Wimp_Poll call supplies a mask to
the Wimp indicating which reason codes it wishes to receive in response to
the call. If we set -this mask to zero (as we have done so far in OurTask) then
all codes will potentially be returned. It is good practice, however, to mask
out the reason codes that your task does not want. This can speed up the
responsiveness of the Wimp considerably - especially if you can mask out
reason code zero, which will be returned very frequently in most cases.

Supplying the mask is easy; it is the RO parameter passed to Wimp_Poll. To
mask out reason codes 0, 4 and 5 in OurTask, we just need to alter line 510 as
follows:

510 SYS "Wimp_Poll",1+(1<<4)+(1«5),block% TO reason%

If you now run the program, you will see that the incrementing count no
longer appears at the top of the screen, and there is no longer a sound
generated when the pointer enters or leaves the window. As you may have
guessed, the masking bit number corresponds exactly to the reason code
number (bit 4 for reason code 4, etc.). The only proviso is that reason codes
2, 3, 7, 9, 10, and 13-16 cannot be masked, and their mask bits (together with
bits 20-31) must be set to zero. Furthermore, three reason codes (1, 6 and 8)
should not normally be masked, because the corresponding event will be
queued until it is dealt with, and the Wimp will come to a halt in the
meantime. The only reason for masking these events is to defer responding
to them temporarily. Thus the only reason codes that may be masked out
permanently are 0, 4, 5, 11, 12, 17, 18, 19.

Since the very essence of a Wimp program is its core of routines to respond
to Wimp poll reason codes, we shall be meeting several of these codes again
throughout the book, and indeed we will be describing in detail other
reason codes which have not been covered in this chapter.

At this point in the book you should be beginning to get a feel for the Wimp
and for the basic framework of a Wimp program. You should be able to see
the fundamental difference between a multi-tasking program and any
single-tasking program you have written before: the pivotal point of a
Wimp program is its call to Wimp_Poll, and the rest of the program
consists essentially of a set of procedures each of which is designed to
handle the program's response to a reason code returned by this call.

50

Chapter 3: The Wimp Poll

If you feel that you are still floundering, we would suggest that you re-read
this chapter very carefully, and if necessary re-read Chapter 2, and
experiment some more with the listings provided.

Before we go on to icons and menus, Chapter 4 will digress slightly and
discuss more fully a topic which we have already touched upon, and which
needs to be fully understood at an early stage of Wimp programming: error
handling.

51

4. Error Handling
Trapping errors - Reporting errors - Responding to error boxes - Example program

We have already introduced the subject of error handling very briefly in
Chapter 1. It would have been impossible to do otherwise, since all Wimp
programs should have some method for dealing with errors, as we
explained earlier. We now need to look a little more closely at the subject. r"'\

TRAPPING ERRORS
As you will probably know if you have written Basic programs before, BBC
Basic provides an ON ERROR statement which enables you to specify
actions which should be taken if the program encounters an error of any
kind. We have already seen this in use in OurTask:

190 ON ERROR PR0Cerror(REPORT$+" at line "+STR$ERL):S
YS "Wimp_CloseDown":END

It is important to realise that Basic will not act on your error handler until
the line which contains it has been executed, and also that any subsequent
ON ERROR statement it meets will override the previous one. So it is quite
possible to have a number of ON ERROR statements scattered throughout
the program, each one giving directions to an error handler which caters for
the specific needs of that section of the program.

Another feature of the statement which you must bear in mind is that, after
encountering an error, Basic jumps to the statement following the ON
ERROR which is currently in force, regardless of which section of the
program is currently being executed. In other words, any error will cause
Basic to forget all about what it was doing at the time (and this includes
functions, procedures, loops etc.) and go straight back to the point at which
the error handler was set up. You have to be very careful about this, since if
this results in the same sectiop. of code which caused the error being
executed again as a result of jumping back to the error handler, the program
will enter an infinite loop from which the only escape is to reset the
computer. To see this in prattice, alter lines 190-200 of !Runlmage as follows:

190 ON ERROR PROCe~ror(REPORT$+" at line "+STR$ERL)
200 whandle%=FNcreatewindow(200,200,300,500,200,200)

52

Chapter 4: Error Handling

What we have done here is to remove the instruction to terminate the task
from the error handler, and introduce an error into line 200 by omitting the
underscore character between "create" and "window". What will now
happen is that as soon as Basic reaches line 200, it will detect the error and
pass control back to the statement following ON ERROR, in this case the
call to PROC.error. The next statement after this is, of course, the one which
caused the error, so the whole cycle will be repeated endlessly. You can
only get out of this by resetting the computer, for example by pressing Ctrl­
Break, so don't try this experiment if you have any unsaved data in any
other applications at the time.

Error handling in Basic is quite a complex subject, and it is recommended
that you read the relevant sections of the BBC Basic Guide for full details.
However, in its simplest form, by using one or more ON ERROR statements
as we have done here, it will meet ~e needs of a good many Wimp
programs.

In OurTask, we have placed the error handler immediately after the call to
Wimp_Initialise, so it will handle any errors generated while the program
is running under the control of the Wimp. It is not uncommon to include an
earlier error handler which is specifically designed to pick up errors before
that point. For example, you could include the following line in the
program to do this:

65 ON ERROR PRINT REPORT$;" at line ";ERL:END

REPORTING ERRORS
~ Before we describe the SWI call Wimp_ReportError, it is important to

realise that the call itself knows nothing about the error it is asked to report.
In other words, it is not an error handler itself but is provided for the use of
error handlers. This means that it is not restricted to reporting errors which
Basic has encountered, but may be used by your program to report any
errors of its own, completely independently of any error handlers you may
have set up. For example, if your program requires the user to type a value
into a writable icon, and you want to restrict that value (which we
will assume is now held in a variable val%) to a maximum of 20, you could
include the following line in your code immediately after ascertaining the
value of val%:

IF val%>20 THEN PROCerror{"The number is too large")

We will be showing you how to read an icon's contents when we look at
icons in the next chapter.

53

Wimp Programming for All

As an incidental but interesting aside, this little example illustrates perfectly "')
the difference between a Wimp and a non-Wimp program. You will
probably have written programs in the past which require user input, and
you may well be used to writing loops which repeat until the correct value
has been entered, as for example:

REPEAT INPUT val%
IF val%>20 PRINT "Number too large"
UNTIL val%<=20

You must never, ever do this under the Wimp. All user input is handled by
calling Wimp_Poll, and it is very bad programming practice to have a
second poll loop within the main one. You must, therefore, treat each .-....,
response from Wimp_Poll as your input loop, and not set up your own
inside it.

On entry.
RO = pointer to error block
R1 =flags
R2 = pointer to application name

(for error box title) ·

On exit
R1 =user response

Figure4.1
Details of SWI

"Wimp _ReportError" (&4-00DF)

The parameters required by
Wimp_ReportError are shown in
figure 4.1. We have already
touched on these towards the end
of Chapter 1, and you will
remember that RO must point to an
error block. The first four bytes of
this block contain the error
number, and in our program we
have used a number of 255. This is
purely and simply because this
number is not used elsewhere. In
theory, error numbers can cover
the entire 4-byte range available,

i.e. 0 to &FFFFFFFF. In practice, only a small proportion of these are
actually used. Acom has split the numbers into chunks, each of which is
allocated to a particular part of the operating system or to a software
producer. Unless you are writing commercial applications, it is not
necessary to worry too much about error numbers, and we will continue to
use 255 in our program.

The error number is followed immediately in the block by a string
containing the message which is to be displayed in the error box. You will
notice that this string must be null terminated, i.e. it must end with a zero
byte (ASCII 0). This serves to highlight an important factor which you must"'
bear in mind when programming the Wimp. If you have written programs
in Basic you will be aware that strings are normally terminated by a

54

Chapter 4: Error Handling

carriage return (ASCII 13). However, many SWI calls under RISC OS which
operate on strings expect those strings to be terminated by a zero byte, and
will also terminate with zero any strings returned by the call. Writing a
Wimp program in Basic, therefore, requires that any such strings have a
zero byte added to the end before being passed to the SWI call, and similarly
any strings returned must be passed through a function which replaces the
zero with a carriage return. If this is not done, Basic will simply not
recognise the set of bytes as a string. We will meet a function to do this later
in the book.

Bit Meaning when set

O Provide an OK icon
1 Provide a Cancel icon

The flags word passed to
Wimp_ReportError in Rl requires a
little bit of explanation. Seven of the
bits in this word may be set or unset
in order to convey certain
information about the way in which
the error box is displayed or
subsequently handled. Only three of
these bits are likely to be of any real
use for most programs, and these
are shown in Figure 4.2.

4 Don't prefix the application
name with "Error from"

Figure4.2
Some useful flags for
Wimp _ReportError

So far in our program we have used a flag value of 1 (bit 0 set) which has
resulted in an OK icon appearing, and a title bar for the error box which
reads "Error from OurTask" (since "OurTask" was the string we passed in
R2). But we could have used a flag value of 3, which would have displayed
both an OK and a Cancel icon, or a value of 19, which would have displayed
OK and Cancel icons, and a title which read simply "OurTask". This could
have been expanded by passing as the string in R2 "Warning from
OurTask" or any other title message we chose. Note that the Wimp will
automatically display an OK icon anyway if neither bit 0 nor bit 1 is set.

I if,WIO ~ccql ~lilt ·ut
nul!i!m<

An error box with user-defined title

55

Wimp Programming for All

RESPONDING TO ERROR BOXES
You will have noticed that when an error box is displayed, the whole
operation of the computer is suspended until the user clicks on one of the
icons (OK or Cancel if present). This is fine as long as there is only one
icon - it is obvious when the user has clicked because control returns to the
program. But what if both OK and Cancel icons are present - how do we
know which has been selected? The answer is that a value is returned in Rl.
This will be 1 if OK is selected, or 2 if it is Cancel. In this way, you can build
in a choice of actions if necessary. To give you an example, alter the OurTask
program as follows and then run it:

k%

85 ON ERROR PROCerror(REPORT$)
95 x%=val%
750 SYS "Wimp_ReportError",block%,3,app$ TO ,errclic

755 IF errclick%=1 THEN val%=0

What will happen now is that the error handler in line 85 will take over
from the earlier one in line 190. When line 95 is reached the first time round
the poll loop, an "Unknown or missing variable" error will be reported,
because the variable val% has not yet been declared. The error box will now
show both OK and Cancel icons, because we have altered the value of the
flags in line 750, and we have also added a return value for RI which is
decoded by line 755. If you click on OK, then val% is defined, which means
that next time round the poll loop there will no longer be an error and the
program will continue as normal. However, if you click on Cancel before
you have clicked on OK, the error will be reported again since the variable
has not been defined.

The difference between the actions taken when clicking on either of these
icons will depend on the task itself. Normally the task will assume that if
Cancel is clicked, the user wishes to abort the current operation, while if OK
is clicked, the user wishes to go ahead despite the error. For a good many
error reporting situations a choice is unnecessary, and a single OK icon is
adequate in order to resume operation of the program, or in the case of a
serious error, to terminate it.

EXAMPLE PROGRAM
We will now update the OurTask program to take account of the features of
Wimp_ReportError which have been covered here. As usual, this listing ---..._
should be added to the earlier ones. We have included lines 85, 95 and 755
as blank lines in case you have experimented with them as described above.

56

Chapter 4: Error Handling

Listing4.1

30 REM Updated to Chapter 4
85
95

190 ON ERROR PROCerror(REPORT$+" at line "+STR$ERL)
700 DEF PROCreport(err$,flag%)
710 name$=app$
720 IF flag% AND 16 THEN name$="Message from "+name$
750 SYS "Wimp_ReportError",block%,flag%,name$ TO ,er

rclick%
755
800 DEF PROCerror(a$)
810 PROCreport(a$,1)
820 SYS "Wimp_CloseDown"
830 END
840 ENDPROC
850

1560 PROCreport ("You have clicked the "+a$+" button",
19)
1570 IF errclick%=2 SYS "Wimp_Closeoown":BND
1730 PROCreport("You have pressed a key - ASCII code

"+STR$key%+" (hex &"+STR$-key%+")",19)
1735 IF errclick%=2 SYS "Wimp_Closeoown":END

The effect of adding this listing is to make two major changes to the way in
which the program works. Firstly, you will see that we have now renamed
the original PROCerror as PROCreport, and added a new PROCerror. This now
enables us to differentiate between errors reported by Basic (which are
passed to the new PROCerror) and errors or messages which we generate
ourselves. PROCreport carries out the function of calling Wimp_ReportError
and then passes control back to the point from which it was called, allowing
the program to decode the response and act upon it. On the other hand,
PROCerror itself calls PROCreport but then terminates the task as soon as the
user responds.

The other change is that an additional parameter has been added to
PROCreport, which is the flags byte. This allows you to decide at the point of
calling the procedure whether to include a Cancel icon, or whether to avoid
the words "Error from".

57

Wimp Programming for All

~

Line 180, the general error handler, no longer needs to terminate the task
since this is now done by PROCerror itself. Two additional lines have been
added to PROCreport - 710 and 720. These determine whether bit 4 of the
flags byte is set, and if it is, the application name is prefaced by "Message
from ". The two lines which previously reported an error when a button
was clicked or a key pressed (1560 and 1730), now set bit 4 of the flags so
that these actions are no longer described as errors. Furthermore, both OK
and Cancel icons are now provided; clicking on OK continues with the
normal operation of the task, while clicking on Cancel terminates it.

There is little more we need to say at present about error handling, but you
will see plenty more examples as the program builds up over the chapters. --.._
In Chapter 5 we will get back to the Wimp itself and tackle the subject of
icons.

58

5. Icons

Icons in use - Creating icons - Example program - Icon flags - Indirected icons -
Exclusive selection groups -Menu icons - Radio icons - Writable icons - Altering icons -
Validation - Sprite icons - The icon bar

We are now ready to move on to the next element in our "WIMP" acronym.
Icons form a vital part of any Wimp system, and in Acorn's window
manager the icon is a powerful and flexible component. Because of this
flexibility, this chapter contains a substantial amount of information, and
we recommend that you try to absorb it in stages in order to grasp fully all
the concepts which are introduced.

An icon is defined in the PRM simply as "a rectangular area of a window's
workspace", and can contain a sprite or text, or a combination of both. The
sprites appearing in directory displays on the Desktop are all icons, but
icons can take many other forms. Each item in a Wimp menu is also an
icon. In this case the icons are usually text only, though it is also possible to
use sprites. Any icon can behave in a wide variety of different ways. For
example, it might have its foreground and background colours reversed
when the pointer moves over it or when it is selected by clicking; it might
be greyed out to show that it cannot be selected; it might be set up to notify
the task if the user double-clicks over it; or it might be what is termed a
writable icon, which means that you can type text into it, and edit the result.
All these functions are controlled automatically by the Wimp; all you have
to do is set the appropriate flags when creating the icon, as we shall see in
this chapter.

ICONS IN USE
The Paint application offers a good example of icons being used in a
practical situation. Load or create a sprite in Paint, open the sprite window
ready for editing, and choose the Show tools option from the Paint submenu.
You should now see the Paint Tools window, which is shown in Figure 5.1,
and is full of icons. In the top section of the window are 21 sprite icons

~ representing graphically the various functions that can be selected from the
window. Below these is a text icon, whose text changes to show which
function is currently selected, and below this are a further four text icons,

59

Wimp Programming for All

labelled "Set", "OR", "AND" and
"EOR". The text in these does not
change, but you will notice that if
you click on one of these icons, its
colours are reversed, while the
colours of the other three stay as (or
revert to) the normal colouring.

Now select the Insert text function (by
clicking on the T icon). An extension
to the window appears containing
eight more icons. Four of these are
plain text icons with no borders and
with their background colour set to
the same as the window's work area.
The remainder are writable icons,
and you will find that clicking on one
of these displays the caret (the red

Figure5.1
Paint's Paint Tools window

vertical bar) in that icon, whereupon you can type and edit text as long as
the caret is visible.

CREATING ICONS
Icons are always associated with a parent window, and each window can
have many icons within it, as we have just seen. Each icon has an icon
handle unique within its own window (issued by the Wimp in incrementing
values from zero), so that the window and icon handles together uniquely
define the icon.

We mentioned briefly in Chapter 2 that icons can be created as part of the .-..,
window creation process, by adding the icon definitions to the end of the
parameter block for Wimp_CreateWindow. They can also be created
separately by using the call Wimp_Createlcon (SWI &400C2). This is
analogous to Wimp_CreateWindow, in that it informs the Wimp about the
icon and supplies all the flags necessary to define it completely without
actually displaying it on the screen. This only occurs when the parent
window or the icon itself is updated.

The information required by the Wimp to create an icon is exactly the same
whether you use Wimp_Createlcon or include it in Wimp_CreateWindow.
In the former case, a 36-byte parameter block is set up (with the address
passed in RI as usua!i. This is shown in Figure 5.2, and consists of 4 bytes .-..,
giving the window hdndle followed by a 32-byte icon definition block. In
the case of Wimp_CreateWindow this 32-byte block is appended to the end

60

Chapter 5: Icons

of the window parameter block (and repeated for as many icons as you
wish to create at that time). Obviously the Wimp needs to know in this case
how many icon definitions are appended, and to do this you simply alter
the value at block+84 (see Figure 2.3 in Chapter 2). We will explain the
meaning of the elements within the icon definition block shortly. Note that
if you are creating icons with Wimp_CreateWindow, the Wimp does not
return icon handles - it merely allocates handle 0 to the first icon in the list,
handle 1 to the next and so on. It is the responsibility of the task to know
which is which.

Parameter block ~inted to by R1 :

block+O Handle of window
(or -2 for left of icon bar, -1 for right)

4 Minimum x co-ordinate of icon bounding box
8 Minimum y co-ordinate of icon bounding box

12 Maximum x co-ordinate of icon bounding box
16 Maximum y co-ordinate of icon bounding box
20 Icon flags
24 12 bytes of icon data

The call returns the icon handle in RO

Figure5.2
Details of SWI "Wimp_Createlcon" (&400C2)

..-....., EXAMPLEPROGRAM
Typically the parent window would be created, either together with or
followed by all its icons, then the window would be opened by using a call
to Wimp_OpenWindow as described in Chapter 2. Some properties of
icons can be altered, and indeed new icons can be created, at later stages in
the process as we shall see in due course. But before we go any further we
will update OurTask to create its first icon. Add Listing 5.1 to the existing
!Runlmage program in the usual way, and then run the application. You
should now see an icon towards the top left corner of the window. Notice
that if you drag the window around, the icon moves with it - all this is done
automatically by the Wimp and needs no help from the task whatsoever.
Notice, too, that we have now masked out poll reason codes 0, 4 and 5 (by

"'""' altering the mask in line 510), removed the code which displayed the
incrementing count on the screen, and also unset the hot keys bit in the
window flags in line 1140.

61

Wimp Programming for All

Listing5.1

165
240 iOhandle%=FNcreate_icon(whandle%,32,-100,160,48,

&7003030,"Test icon",0,0,0)
510 SYS "Wimp_Poll",&31,block% TO reason%
530
600 WHEN 6:PROCclick(block%!16)

1140 block%!28=&FF000012
1500 DEF PROCclick(icon%)
1510 CASE icon% OF
1520 WHEN -l:a$="the background"
1530 OTHERWISE:a$="icon "+STR$icon%
1540
1560 PROCreport("You have clicked over "+a$,19)
2000 DEF FNcreate_icon(whan%,ix%,iy%,iw%,ih%,flag%,te

xt$,ptr1%,ptr2%,ptr3%)
2010 !block%:whan%
2020 block%!4=ix%
2030 block%!8=iy%
2040 block%!12=ix%+iw%
2050 block%!16=iy%+ih%
2060 block%!20=flag%
2080 $(block%+24)=text$
2140 SYS "Wimp_Createicon",,block% TO ihandle%
2150 =ihandle%
2160

If you have followed the build-up of our program over the course of the
book so far, you should not have too much difficulty in understanding the
function FNcreate_iam. This is called at line 240 and takes ten parameters, of
which the first five are the window handle, the x and y co-ordinates of the
bottom left-hand comer of the icon, and the icon's width and height
respectively. These are all placed into the block in lines 2010-2050. The four
co-ordinates are all measured relative to the window's work area origin, i.e.
the top left-hand corner of the work area, so the y co-ordinates of the icon
bounding box are measured downwards and will both be negative, with the
more negative of the two being first - see figure 5.3. As with our window

62

Chapter 5: Icons

creation function, we have specified the second pair of parameters as width
and height rather than the co-ordinates of the top right-hand corner of the
icon, and so we must add them to the x and y co-ordinates of the bottom left
corner in order to supply the correct values for Wimp_Createlcon.

ICON Fl.AGS

min y (-400) maxy (·350)

minx (100) --+-+-- Icon

maxx(200)

---+-+-- vlaibla area

- ----+- work area

Figure 5.3
The four co-ordinates used in the

Wimp_Createlcon parameter block,
with example values

The remaining five parameters to FNcreate_icon require some explanation,
and we will start with the icon flags, passed to the function in flag%. The 32
bits of icon flag data are shown in Figure 5.4. Most of the items should by
now be reasonably obvious, but there are three which call for comment. If
bit 8 is set, the icon data is indirected. This means that instead of the icon text
(or the name of the sprite) itself being placed at block+24, the block holds a
pointer to an area of RAM. This permits text of more than 12 characters in
length to be used in an icon, and also allows the creation of icons containing
both text and a sprite. Additionally, indirection must be used in cases where
the content of the icon is liable to change (such as with writable icons), and
in other special cases. We will be looking at indirected icons later in the
chapter.

63

Wimp Programming for All

Bit Meaning when set

0 Icon contains text
1 Icon contains a sprite
2 Icon has a border
3 Contents centred horizontally
4 Contents centred vertically
5 Icon has filled background
6 Text is anti-aliased
7 Icon requires task's help for redraw
8 Icon data is indirected
9 Text is right justified

10 If selected with Adjust don't cancel
others in same ESG

11 Display sprite at half size
12-15 Icon button type
16-20 Exclusive selection group (ESG)
21 Icon is (already) selected
22 Icon is not selectable (is shaded)
23 Icon has been deleted
24-27 Foreground colour (if bit 6=0)
28-31 Background colour (if bit 6=0)
24-31 Font handle (if bit 6= 1)

Figure 5.4
Icon flags used with Wimp_Createlcon

The second point that needs clarification is the notion of an exclusive selectwn
group or ESG (bits 10 and 16-20). The Wimp allows you to nominate groups
of icons whose behaviour can depend on the state of others in the same
group. For example, you might have a feature which could take three
possible values (thus volume might be high, low or off). In such a case icons
representing the three states could be placed in the same ESG by giving
them the same ESG number (i.e. any number between 1 and 31, since the
value supplied at bits 16-20 is a five-bit integer). Each time one of the icons

,-.,..

in that group is selected, the Wimp will automatically deselect all other
icons in the same group. Any icon with an ESG of zero on the other hanc(")
will behave independently of all others. Again we will take a closer look at
this feature later in the chapter.

64

Chapter 5: Icons

Finally the icon button type is again an integer value, this time a number
between O and 15 which specifies how the icon will affect, and be affected
by, the pointer. Figure 5.5 shows the range of icon button types and the
action associated with each.

Value

0
1
2
3
4

5
6
7
8
9

10

11

12-13
14

15

Effect

Ignore the mouse and pointer
Notify task continuously while pointer is over icon
Click notifies task (auto repeat)
Click notifies task (once only)
Click selects icon; release over icon notifies task;
moving pointer away deselects
Click selects; double-click notifies task
As 3 but can also drag
As 4 but can also drag (moving away doesn't deselect)
As 5 but can also drag
Pointer over icon selects; moving away deselects;
click over icon notifies task (menu icon)
Click returns button state*256; drag returns button
state*16; double-click returns button state*1
Click selects, and returns button state* 1;
drag returns button state* 16 (radio icon)
Reserved
Click causes icon to gain caret, and parent
window to gain input focus (writable icon);
can also drag
Click causes icon to gain caret, and parent
window to gain input focus (writable icon)

Figure 5.5
Icon button types

You should notice a strong similarity between the icon button type and the
work area flags which we looked at in Chapter 2 (see Figure 2.9), and in fact
the two work in a very similar way. Menu icons, radio icons and writable icons
all have particular properties which are recognised by the Wimp, and we
will elaborate on these later.

65

Wimp Programming for All

ICON FLAG GENERATOR
It is a good idea at this point to experiment with the values passed to
FNcreate_icon for the icon flags and the bounding box co-ordinates. Because
of the complexity of deriving valid icon flags, the program in Listing 5.7 at
the end of the chapter is supplied. This attempts to automate the process. If
you run it, it first asks if you have a default set of flags (which you may
wish to use as a template for a new set). If you just press Return at this
point, the default option will be ignored. But if you supply a set of icon
flags as a hex number, this will be used as a default in what follows.

You will then be presented with each icon attribute, and will be asked to
enter Y, N or a numerical value where appropriate. By pressing Return on
any item, you will enter the default from the default string supplied at the
start. At the end a hex value is displayed for the resultant set of flags, which
should then be inserted into line 230 in place of the original value of
&700303D. You may like to try altering the colours of the icon, the
alignment of the text, whether it has a border or is filled, and the text itself
(though it must not at this stage be more than 12 characters long).

You could also experiment with the icon button type. Try a value of 0
(&700003D in the icon flags byte) and see what happens when you click on
the icon. Then try a value of 15 (&700F03D) and repeat the test. You could
also try a value of 9 (&700903D) and see what happens then. If the ESG is
still set to 0 you will probably find that the last-mentioned button type
produces an odd effect - try altering the ESG to a non-zero value with a
button type of 9 (e.g. &701903D) and you should see a behaviour pattern
which you will recognise from menu structures, and from icons used in
some applications.

INDIRECTED ICONS
We have purposely kept our program simple so far and have not yet
catered for indirected icons. In Listing 5.1, we simply put the text string
directly into the block in line 2080, using our seventh function parameter,
text$:

2080 $(block%+24)=text$
In many cases, this is all we need to do, since 12 characters is often enough
to hold the text that we wish to display, and will always be enough to hold
the name of a sprite. However, it is often necessary for an icon to hold more
than 12 characters of text, and furthermore, data held directly in the
parameter block in this way carn1ot be altered once the icon has been
created. So an alternative method is provided for specifying text or sprite

66

Chapter 5: Icons

names which cannot be handled in the normal way. This is known as
indirection. Indirection means simply that instead of the data itself appearing
in the block, a pointer to a data block elsewhere in RAM is supplied. The
contents of this data block are set up by the task, and can be altered at any
point in the program.

In fact, since there are 12 bytes available at block+24, three pointers are
supplied, and these form the last three parameters to FNcreate_icon, which
are ptr1%, ptr2% and ptr3%. The exact use to which the three data words is
put depends on the state of three bits in the icon flags: bit 8 (indirection), bit
1 (sprite) and bit 0 (text). Bit 8 must be set, otherwise indirection is not used.
The effect of the other two bits on an indirected icon is given in Figure 5.6.

Sprite Text Use of the 3 data words

0 +24 Pointer to text buffer
+28 Pointer to validation string
+32 Text buffer length

0 +24 Pointer to sprite or sprite name
+28 Pointer to sprite control block

(+1 for Wimp sprite area)
+32 0 if +24 is a sprite pointer,

length if it's a name pointer

+24 Pointer to text buffer
+28 Pointer to validation string,

which can contain sprite name
+32 Text buffer length

Figure 5.6
The meaning of the 3 data words depends on the state of

the sprite and text bits in the icon flags.
The address of the 3 words is given as an offset from the

address in RI (the start of the parameter block)

To take the two cases where the text bit is set (for text or text-plus-sprite
icons), the first of these words (block+24) is a pointer to a text string
elsewhere in memory, while the third (block+32) is the length of the buffer
used for this string (i.e. the maximum number of characters that can be
Jisplayed in the icon). The pointer in the middle (block+28) is to a so-called

67

Wimp Programming for All

validation string which enables you to specify information about the format of
the text string - we will look at this later but for the moment we will not
complicate matters by describing it here, except to say that in the case of a
text-plus-sprite icon the validation string will contain the sprite name if
applicable.

In the case of sprite icons, the first pointer is to a buffer containing the
sprite name, or a pointer to a sprite itself. The second points to a sprite
control block (which may be an explicit reference to a block set up by the
task itself, or it may point to the Wimp sprite pool if a value of 1 is used
instead of a pointer). The third pointer is either zero (if the first pointer
points to a sprite) or the buffer length if it points to a buffer containing the
name.

To help clarify this we will add a simple example to our program. Suppose
we wish to create an icon containing the text string "Serial port status".
Because this is more than 12 characters in length, we must use an indirected
icon. We must first derive a value for the icon flags for our new icon. If we
take as a basis the flags word used in our earlier example, (&700303D), the
only change we need to make is to set the indirection flag (at bit 8). We can
do this by adding 2'8 (=&100) to the original value. This gives a new flag
value of &700313D.

This new icon is still text only, so the sprite bit is zero. This means that the
three data words take the form given in the first of the three entries in
figure 5.6 (i.e. sprite=O, text=l). This tells us that the first word must point
to the text string in memory, the second to a validation string (we will set
this to -1 because no validation string is used in this example), while the
third simply gives the text buffer length.

Listing 5.2

210 DIM text1% 32
220 $text1%="Serial port status"
250 ilhandle%=FNcreate_icon(whandle%,32,-200,300,48,

&700313D,"",textl%,-l,32)
2070 IF ptrl%=0 THEN
2090 ELSE
2100 block%!24=ptr1%
2110 block%!28=ptr2%
2120 block%!32=ptr3%
2130 ENDIF

68

Chapter 5: Icons

What we have done here is to dimension a small text buffer, text1% (line
210) and place our text string into it (line 220). Our new call to FNcreate_icon
in line 250 places the icon at co-ordinates 32,-200 within the work area, and
gives it a width of 300 graphics units and a height of 48. Now if you run the
program you will see the new icon, but you will notice that part of it lies
beyond the edge of the visible area. To rectify this, alter the line which
determines the size of the visible area as follows:

200 whandle%=FNcreate_window(200,200,400,500,100,200)

EXCLUSIVE SELECTION GROUPS
When an icon is initially defined, it is assigned to a so-called exclusive
selection group (or ESG) by supplying a number between 0 and 31 in the icon
flags (bits 16-20). If zero is used, then the ESG feature does not take effect,
but for any other value, the Wimp ensures that only one member of each
group may be highlighted at any time. Thus if you assign three icons to
ESG 1, selecting any one of them by clicking on it with Select will cause the
other two icons in the same group to be deselected automatically.

The effect of clicking with Adjust depends on the state of icon flag 10. If this
is set, then selecting an icon with a non-zero ESG does not de-select the
others in the group. You can see this in operation when selecting files in a
directory display.

We can easily set up an ESG in the test program. As it stands at the
moment, both icons have been assigned to ESG 0, making them behave
independently. But we can assign them to ESG 1 by altering the value of the
integer in bits 16-20 of their icon flags from a zero to a one. At the same
time, we will alter the button type to 5 (click selects; double-click notifies
task). Thus &700303D becomes &701503D, and &700313D becomes
&701513D. So now insert these values into lines 240 and 250 as follows:

240 iOhandle%=FNcreate_icon(whandle%,32,-l00,160,48,
&701503D,"Test icon",0,0,0)

250 ilhandle%=FNcreate_icon(whandle%,32,-200,300,48,
&701513D,"",text1%,-1,32)

If you now run the program, you will see that if one is highlighted, clicking
on the other will de-highlight it, and so on. Furthermore, a single click will
no longer activate the error box as before, whereas a double-click on either
icon will do so. At the moment clicking with Adjust will have exactly the
same effect as clicking with Select. But if you now set flag 10, by altering the
value of the flags to &701543D in line 240 and &701553D in line 250, you
will find that the two icons are no longer mutually exclusive when clicking
with Adjust.

69

Wimp Programming for All

As it stands, when the test application starts up neither of the two icons is
in a selected state. To remedy this, we can set flag 21 of one of the icons at
the start of the program. In the case of the first icon (line 240), this involves
changing its flag to &7215430.

MENU ICONS
We mentioned earlier that there are three particular types of icon which the
Wimp recognises as having special properties. The first of these types is
known as the menu icon (button type 9). When the pointer moves over an
icon of this type, it is "selected" (i.e. the colours are inverted), and when the
pointer moves away it is deselected. If the mouse is clicked while the icon is
selected, then the task is notified. It is called a menu icon because this is
exactly what happens when you traverse a RISC OS menu; in fact, menu
items are nothing more than icons whose button type is forced by the Wimp
to type 9.

If you experimented earlier with button types as we suggested, you may
have tried out type 9 and found that the colours flickered continually while
the pointer was over the icon. This is because, in order to use this button
type effectively, you must set the ESG to a non-zero value. This can be any
value between 1 and 31, and all menu icons in a window can have the same
ESG since by their very nature only one can be selected at any time. It is
usual therefore to keep one ESG number specifically for all menu icons in a
window, using other non-zero ESG numbers for cases where icons need to
be grouped (see the section below on radio icons), while all remaining icons
in the window will be set to an ESG of zero.

Menu icons are often used where a click is required to confirm or cancel an
action within a dialogue box. To take a concrete example, load up Paint
once more, open a sprite file window, and move the pointer across the
Create option on the menu in order to display the Create Sprite dialogue box.
If you now move the pointer over the OK icon, you will see that it is a menu
icon, and behaves exactly as we have described here.

RADIO ICONS
Radio icons (button type 11) allow you to group a set of icons in such a way
that when one is selected, all the others in the same group are deselected.
As such, they make use of the properties of ESGs which we have described
earlier, and which we have already seen in our test program. Unlike button
type 5 which we used in the test program, however, clicking with Select on
a radio icon which is already selected does not de-select it. The icons
therefore behave like a row of buttons on a radio set for selecting the

70

Chapter 5: Icons

waveband - hence the name "radio icon". Clearly, all icons in a group must
have the same ESG number, and this number must be unique to the group
within the window.

It is quite common to use text­
plus-sprite icons for radio icons.
Acorn has in fact provided a pair
of sprites for this very purpose;
these have the appearance of a
white diamond shape, which
turns green in the centre when
selected (see Figure 5.7). You can
see two groups of these icons in
Paint's Print Sprite window (to see
this, load or create a sprite and
then move the pointer across the
Print menu option). We will be
showing you how to use sprites in
icons later in this chapter.

Figure 5.7
A group of radio icons using

Acorn's sprites

If we now change the icon definitions in our program, we can see the effect
of various types of icon within the same window. Add listing 5.3 to our
!Runlmage program and then run it.

Listing 5.3

210
220
240 iOhandle%=FNcreate_icon(whandle%,32,-100,128,48,

&7000019,"Volume:",0,0,0)
250 ilhandle%=FNcreate_icon(whandle%,180,-100,80,48,

&722B03D,"High",0,0,0)
260 i2handle%=FNcreate_icon(whandle%,180,-160,80,48,

&702B03D,"Low",0,0,0)
270 i3handle%=FNcreate_icon(whandle%,80,-300,120,64,

&C701903D,"0K",0,0,0)
1505 IF block%!8 AND 5 THEN
1520 WHEN l:PROCreport("High is now set",17)
1530 WHEN 2:PROCreport("Low is now set",17)
1540 WHEN 3:PROCreport("You have clicked on OK",17)
1560
1570 ENDIF

71

Wimp Programming for All

Icon 0 is now a plain text icon (type 0) bearing the legend "Volume:", while
icons 1 and 2 ("High" and "Low") are radio icons in ESG 2, and icon 3 is a
menu icon in ESG 1 containing the text "OK". When you run the program,
you will now find that it is starting to behave like a real application.
Clicking on Volume or on the background has no effect, because normally
these would not require any action by a program. Clicking on High or Low
will display a message telling you which has been selected, while clicking
on OK also displays a message reporting the click. This all takes place
because we have altered the actions of PROCclick. In a real application, the
calls to PROCreport in lines 1520-1540 would be replaced by code which
performed some action dependent on which icon had been clicked.

WRITABLE ICONS
A writable icon (button type 15) is exactly what the word suggests: an icon
into which text may be typed by the user. You will see writable icons in use
on the Desktop whenever you perform a save operation for example, as the
icon into which you must enter the filename is of this type. This form of
icon makes life very easy for the programmer, because all the text input and
editing performed by the user is handled entirely by the Wimp, and the task
only becomes involved if Return or certain special keys are pressed (see
Figure 3.5 in Chapter 3 for a list of these). In other words, if any key other
than those just mentioned is pressed while the caret is in a writable icon, the
Wimp will enter the appropriate character into the icon without bothering
to inform the task of the keypress. This includes processing keys such as
Delete, Copy, Cursor left and Cursor right, and Ctrl-U (which deletes the
entire text in the icon).

To see how this works, we will create a simple writable icon in our
program. We will need to dimension another small buffer, but this time we
will put an empty string into the buffer to start with:

210 DIM text1% 20:$text1%=""

though it could contain anything you wish up to a maximum length of the
buffer size (in this case 21) less 1 for the terminator. For example, writable
icons in save boxes are often set up initially with a default filename, such as
SpriteFile or TextFile.

Next we need to define another icon with a suitable set of icon flags . We can
base these on the value used previously for our indirected icon (&7003130).
A writable icon has to be indirected since otherwise it would not be possible
for the change in contents to be registered as the user types in text. The only
alteration we need to make to the flags is in the icon button type. This was
previously type 3, but we now need type 15. If you use the Icon Flag

72

Chapter 5: Icons

Generator and enter the previous value as a starting point, you will get a
new value of &700F13D, so you can now add the following lines to the test
program:

210 DIM text1% 20:$textl%=""
280 i4handle%=FNcreate_icon{whandle%,8,-400,384,48,&7

OOF13D,"",textl%,-l,21)

When you run the program, you will see the new icon, which will be empty
to start with. But as soon as you click the mouse over the icon, the red caret
(a vertical cursor) appears, and the window surround turns cream in colour
to indicate that this window, and this window alone, has the so-called input
focus. Any text you type in will be written into this icon, and you may edit
the text using the keys mentioned above. If you press keys which are not
processed automatically by the Wimp (such as the function keys, Return
etc.), these key presses will be reported to the task by the Wimp using
reason code 8, and so the procedure we inserted into OurTask back in
Chapter 3 to handle these reason codes (PROCkeypress) will now be
activated again.

This demonstrates that, for normal text entry in a writable icon, everything
is handled by the Wimp without further ado, but as soon as a key is pressed
which needs attention, the task is asked to handle it. Pressing Return, for
example, would mean that the user has finished typing into that particular
icon, so the task may want to process the result. Pressing Cursor up or
Cursor down may mean that the user wishes to move on to the next or
previous writable icon in a chain, and so on. In a fully-fledged application,
the task will need to respond to key presses such as these.

You will find if you have entered the lines exactly as given above that you
cannot type more than 20 characters into the icon, even though there would
be enough space for more. This is because we have specified the length of
the buffer (the final parameter to FNcreate_icon and the pointer at block+32)
as 21 (i.e. 20 characters plus a terminator).

You may notice that when it first appears, the caret is centred horizontally
within the icon, and as you type in text or delete it, it remains centred. This
is because we have set bit 3 of the icon flags for this icon (Horizontally
centred). To justify the text to the right-hand end of the icon, we need to
unset bit 3 and set bit 9 (Right justify). Probably the most common state is to
use left justified text in writable icons. This is achieved by clearing both bits
3 and 9. To do this with the present icon, we would need to change the icon
flags value to &700F135.

73

Wimp Programming for All

READING AND ALTERING THE CURRENT STATE OF AN ICON
Of course, there is not much point in letting the user type in text if the task
doesn't know what has been written. In the example given here, this is easy:
it is stored in the indirected text buffer set up at the start of the program.
The string held at text1% will always reflect what the user has typed
(because the Wimp has been given this address as the pointer to the icon's
contents), and may be read at any time.

There are situations however (which we shall cover later in the book) where
you may not know the address of the buffer being used for the icon's
contents. You may also want to find out other information about the current
state of an icon, or indeed alter its state in some way. To enable you to do
this, the Wimp provides two SWI calls, Wimp_GetlconState (&400CE) and
Wimp_SetlconState (&400CD). The first of these two calls returns the
complete icon definition block updated to show the current state of the icon.
To call Wimp_GetlconState, the window handle is placed at block+O and
the icon handle at block+4. The block address is passed in Rl as usual. On
return these 8 bytes are preserved, and the 32-byte icon block is placed at
block+8. Thus the minimum x co-ordinate of the icon's bounding box
appears at block+8, the y co-ordinate at block+ 12, and so on. The icon flags
(returned at block+24) can be used to check whether the icon is in a selected
or deselected state (bit 21), whether it is shaded (bit 22) and so on.

If you do not know it already, you can also find out the address of an
indirected icon's buffer by reading the contents of block+28. Remember that
this is a pointer to the buffer, not the buffer itself, so you must read the string
at block!28, not block+28. The following example shows how this would be
done:

!block%=whandle%:block%!4=ihandle%
SYS "Wimp_ GeticonState",,block%
icontext$=$(block%!28)

We mentioned earlier that you can alter parts of an icon's definition after it
has been created. In fact, apart from the data in an indirected icon's buffer
(which is not actually part of the icon definition itself), the only element that
can be changed is the value of the icon flags . The SWI Wimp_SetlconState
is provided to enable you to do this, and when this call is made the Wimp
automatically updates the icon to reflect any changes that have been made.
Details of the call are shown in Figure 5.8. The two values at block+8 and
block+12 require some further explanation, and this is given in Figure 5.9. -----..
These two words taken together tell the Wimp exactly what to do with each
bit of the icon flags. Any flags which are to be left alone must remain as

74

Chapter 5: Icons

zero in both words; any which are to be set must be 1 in both words; while
any which are to be cleared must be 1 at block+12 and zero at block+8. A
couple of examples will clarify this. Suppose we wish to set bit 22 (icon is to
be shaded). This means that bit 22 must be 1 in both words, but all other bits
must be zero. So the following lines will achieve this: ·

!block%=whandle%:block°~!4=ihandle%

block%!8=1<<22:block%!12=1<<22
SYS "Wimp_Seticonstate",, block%

If on the other hand we wished to unset bit 9 (text is right-justified) we
would use:

!block%=whandle%:block%!4=ihandle%
block%!8=0:block%!12=1<<9
SYS "Wimp_SeticonState",,block%

block+O

4
8

12

window handle
(-1 for icon bar right,
-2 for icon bar left)
icon handle
EOR word
clear word

c

0
0

E

0
1
0

Effect

preserve the bit's status
toggle the bit's status
clear the bit
set the bit

Figure 5.9 Figure 5.8
Parameter block for

SWI "Wimp_SetlconState" (&400CD)
Details of (C)lear word and (E)OR

word for Wimp _SetlconState

VALIDATION
We mentioned earlier that an indirected icon can employ a validation string.
This string can serve a number of functions. For example, you can use it to
tell the Wimp that a writable icon should only be able to accept certain
characters, and any others will be rejected by the icon but passed instead
through Wimp_Poll along with the unprocessed keys we mentioned above.
An example will illustrate this. At the moment, our writable icon has
block+28 (the address of a validation string if there is one) set to -1,
indicating that no validation string is to be supplied, and that the writable
icon defaults should be used when determining which characters to accept
and which not. To make use of a validation string, dimension a small area
of RAM at the start of the program and insert a short string as follows:

230 DIM valid% 20:$valid%="A-0-9"

75

Wimp Programming for All

Now alter the line which calls FNcreate_icon for the writable icon as follows:
280 i4handle%=FNcreate_icon(whandle%,8,-400,384,48,&7

OOF13D,"",textl%,valid%,21)

You will see that we have replaced the -1 as the penultimate parameter with
the address of our new buffer.

Now if you run the task again, everything will be as before, except that you
will no longer be able to enter characters 0-9 from the keyboard. They will
instead be passed to the task by Wimp_Poll reason code 8, and you will see
the familiar message displayed each time you enter one of these characters.

The syntax for the validation string is somewhat involved. The first
character in the string indicates what type of command is to follow, and in
our string it is an "A", indicating a sequence of allowed characters. The tilde
symbol .,_,, means the sequence which follows is disallowed. In our example
we used "A-0-9". This is interpreted as Allow all normal characters, except those
in the range following the tilde. To take another example, if you wanted to
accept only upper case letters, the numbers 0-9 plus colons, full stops and
commas, you would use "A0-9A-Z:.,". To allow only alphabetic characters
and no others, you would use "AA-Za-z"

So far we have only looked at the A command within validation strings, but
there are four others available in RISC OS 2:

D the Display command
F the Font command
L
s

the Line command
the Sprite name command

The D command can be used to conceal characters typed into an icon for
use with passwords etc. The F command supplies colours for anti-aliased
fonts, the L command tells the Wimp that a text icon may be formatted over
a number of lines if it overflows the first, while the S command permits
sprite names to be supplied for use with text and sprite icons. We shall be
describing how to use sprites in icons in a moment. You can use more than
one validation command in the same string by separating the commands
with semicolons.

RISC OS 3 has a further three validation commands: R, which allows you to
use fancy three dimensional icon borders; K, which enables you to specify
actions for certain keys; and P, with which you can specify a sprite to be
used for the pointer when over the icon.

76

Chapter S: Icons

A detailed description of validation strings is beyond the scope of this book,
and you are recommended to read the information on Wimp_Createkon in
the PRM if you wish to know more. But fc)r the moment you might like to
try one more example in OurTask. Alter line 230 to:

230 DIM valid% 20:$valid%="Aa-zA-Z;D\-"

This sets up the icon for password entry, accepting just upper and lower
case alphabetic characters, but displaying them as dashes as you type.

SPRITE ICONS
So far all the icons we have created have been text only. But it is also
possible to display sprites in icons, either on their own or with text as well.
To do this, bit 1 of the icon flags must be set. If bit 0 is also set, it will be a
text-plus-sprite icon, otherwise a sprite-only icon. Both kinds can be either
indirected or non-indirected, though non-indirected text-plus-sprite icons
are of little use since the sprite name and the icon text must be the same
(since they both occupy the same space in the icon block).

Sprites used in icons can come either from the Wimp sprite pool, or from a
sprite area set up by the program itself. The Wimp sprite pool contains all
the sprites which are incorporated in the operating system ROM, together
w ith any other sprites from sprite files which have been subject to an
lconSprites command (see Appendix B). In other words, any sprite which is
in a !Sprites file belonging to an application which has been seen by the Filer
should be in the RAM area of the Wimp sprite pool.

When you use a sprite in an icon, the Wimp must be told where to find it. In
the case of a non-indirected sprite icon, and also a text-plus-sprite indirected
icon, the Wimp will look at the sprite area pointer for the window which
contains the icon (at block+64 of the window parameter block - see Figure
2.3). If this is 1, the Wimp pool will be used, otherwise the pointer should
point to a sprite area set up by the program. Appendix C gives details on
setting up your own sprite area.

In the case of an indirected sprite-only icon, a pointer to a sprite area is
provided at block+28 of the icon definition block, and this pointer overrides
the pointer in the window block. This follows the same rules as before: 1 for
the Wimp pool, or the specific address of a sprite area.

As for the name of the sprite, for a non-indirected icon this simply sits at
block+24, just as icon text does for a text icon. If the icon is indirected,
however, the location of the name depends on whether it is a sprite-only or
a text-plus-sprite icon. In the former case, a pointer to the name is given at

77

Wimp Programming for All

block+24, and the length of the buffer containing the name at block+32 (it is
also possible to specify a pointer directly to the sprite definition itself, but
for most purposes it is easier simply to use the name, as we shall do here).
In the case of a text-plus sprite icon, the sprite name must be included in the
validation string, prefaced by the S command.

To put all this into practice, we will add two further icons to OurTask. Add
listing 5.4 to the program, and then run it. You should now see two more
icons in the window, one of which displays a warning triangle, and the
other a disc drive symbol.

Listing 5.4

220 DIM text2% 10:$text2%="floppydisc"
290 iShandle%=FNcreate_icon(whandle%,80,-492,88,88,&

lA,"error",0,0,0)
300 i6handle%=FNcreate_icon(whandle%,220,-472,100,44

,&11A,"",text2%,l,ll)
1360 block%!64=1

Both the sprites we have used come from the ROM area of the Wimp sprite
pool, so we have altered the window's sprite pointer to 1 in line 1360.
Incidentally, to see the full range of sprites built into the ROM, run the
following short program:

SYS "Wimp_BaseOfSprites" TO r%
SYS "OS_Sprite0p",268,r%,"ROMSprites"

which will save a sprite file called ROMSprites. Load this into Paint to see
the sprites.

If you examine carefully what we have done here, you will see that icon 5
(the warning triangle) is a non-indirected sprite-only icon, with the sprite
name "error", while icon 6 is an indirected sprite-only icon, with the sprite
name "floppydisc" set up in text2% in line 220. You will see that the last
three parameters supplied to FNcreate_icon are the pointer to the name
buffer, the pointer to the Wimp sprite pool (1), and the length of the name
buffer.

As a final example, we will create a set of radio icons using indirected text­
plus-sprite icons. Our window is getting a little cluttered now, so we will
remove all the other icons in the process. Add listing 5.5 to the existing
program and then run it. You should now see a line of three radio icons,
consisting of text alongside the familiar Acorn "radio button" sprites.

78

Chapter 5: Icons

Listing5.5

210 DIM textl% 20,text2% 20,text3% 20
220 $text1%="Fahrenheit":$text2%="Celsius":$text3%="

Kelvin"
230 DIM valid% 20:$valid%="Sradiooff,radioon"
240 i0handle%=FNcreate_icon(whandle%,32,-100,240,44,

&1722B113,"",text1%,valid%,21)
250 ilhandle%=FNcreate_icon(whandle%,32,-148,240,44,

&l 702Bll3, "", text2%, valid%, 21)
260 i2handle%=FNcreate_icon(whandle%,32,-196,240,44,

&1702Bll3,"",text3%,valid%,21)
270
280
290
300

1510
1520
1530
1540
1550
1570

Let us now have a look at what we have done here. First of all, we have
dimensioned three text buffers in line 210 to hold the text for the three icons,
and placed the text into them in line 220. Next we have dimensioned a
buffer at line 230 for the validation string, which in this case will hold the
sprite name. Since all three icons use the same sprite, only one buffer is
needed. In fact, two sprites are required, the first to represent the de-selected
state of the icon, and the second for the selected state. The validation
command allows us to do this by separating the two names with a comma,
as we have done here: "Sradiooff,radioon". The initial "S" is the validation
command, and the rest of the command tells the Wimp "use a sprite called
"radiooff" when the icon is de-selected, and a sprite called "radioon" when it
is selected". If you have already looked at the Wimp's ROM sprites as we
suggested earlier, you will have seen that these two sprites are the Acom
radio button sprites.

The icons are created in much the same way as the others we have seen in
this chapter, but the icon flags deserve a little explanation. When i:ising text­
plus-sprite icons, the state of the horizontal, vertical and right-justified flags

79

Wimp Programming for All

determines where the text and the sprite appear relative to each other. For
full details of this relationship you are referred to the PRM under the
description of Wimp_Createlcon. The normal configuration for radio icons
with sprites is to set just the vertical bit (bit 4) which results in the sprite at
the left with the text alongside it, as we have done here.

THE ICON BAR
We have almost finished our description of icons now, and although we
have by no means exhausted the subject, a lot of information has been
presented in this chapter. As we have said before, re-reading and
experimenting is the best way to understand the complexities if you are still
unsure about anything. Before we move on to menus, however, there is one
further addition we can make to our program. One very noticeable thing
about OurTask when compared to most other applications is that it does not
install an icon on the icon bar, but starts up straight away by opening a
window. We will now rectify this by making it behave in a more
conventional fashion.

Installing an icon on the icon bar is very simple; all you have to do is create
an icon using Wimp_Createlcon, but specify the window handle as -1 (for
the right-hand side of the icon bar) or -2 (for the left-hand side). The left­
hand side of the icon bar is used for physical devices, such as printer
drivers, disc drives etc., and the right-hand side for anything else.

The icon will normally be sprite-only, non-indirected, and the sprite you
use will normally be the application's own sprite, i.e. the one which
represents the application directory in a directory display. This sprite will
already be in the Wimp sprite pool, since the application has to be seen ---..
before you can double-click on it. There are rules governing the positioning
of icons on the icon bar; the Wimp will decide where to put them
horizontally (because you will not know how many other icons there may
be on the bar at the time), but the vertical position must be 0 (i.e. the icon
bar's work area origin). The height should be 68 OS units (which equates to
17 pixels in mode 12), while the width can be any reasonable value, though
if you are using an application sprite this will normally also be 68 OS units
(34 pixels in mode 12). The button type for the icon flags will normally be 3
(click notifies task) since the whole purpose of having an icon on the bar is
to respond to clicks from the user.

Finally, once the icon is installed on the bar, we no longer want the window --...._
to open when the task is started. This action can now be deferred until you
click on the icon bar icon. As well as creating the icon in line 470, Listing 5.6

80

Chapter 5: Icons

takes care of this by expanding PROCclick to differentiat~ between clicks
over the window and clicks over the icon bar, and passing the latter to
PROCibar. This procedure ascertains which button has been clicked (line
2210), and if it is Select or Adjust, the window is opened using the same
commands as before (lines 2230-2250).

Listing5.6

30 REM Updated to Chapter 5
440
450
460
470 ibhandle%=PNcreate_icon(-1,0,0,68,68,&3002,"!our

task",0,0,0)
580
590
600 WHEN 6:PROCclick(block%!12)

1500 DEF PROCclick(win%)
1510 CASE win% OF
1520 WHEN -2:PROCibar(block%!8)
1530 WHEN whandle%:
1550 ENDCASE
2200 DEF PROCibar(button%)
2210 CASE button% OF
2230 WHEN 1,4:!block%=whandle%
2240 SYS "Wimp_GetWindowState",,block%
2250 block%!28=-l:SYS "Wimp_OpenWindow",,block%
2270 ENDCASE
2280 ENDPROC
2290

Now when you run OurTask, it will install its icon on the icon bar and wai
for you to click on that icon with either Select or Adjust, whereupon tht
window will be opened as before. Note that the sprite !ourtask must exist
otherwise it will not appear on the icon bar (though the invisible icon itsel
will still be there and if you click on the space where the sprite should be
the window will still open). If you are not yet sure about creatint
application sprites, we would suggest that now is a good time to stud)
Appendix B and create your !ourtask sprite.

81

Wimp Programming for All

Figure5.10
Icons created by the various listings in this chapter

In the next chapter we will describe menus in detail. In the meantime,
Listing 5.7 below is the icon flag generator program referred to earlier.

Listing 5.7

10 REM >IconFlag
20 REM Program Icon Flag Generator
30 REM Author Lee Calcraft
40
80 MODE 12
90 flag%=0

100 PRINT"WIMP ICON FLAG GENERATOR"
110 PRINT'"Generates 32-bit icon flag for use with Wi

mp_Createicon"'
120 INPUT "Default value (or Return) &"default$ IT"\
130 PRINT'"Respond with Y (=YES) Ret (=Copy) or any o I 1

ther key (=NO)"

82

Chapter 5: Icons

140 PRINT"to questions below about the window you are
creating"'
150 IF default$="" THEN
160 e%=FALSE
170 ELSE d%=EVAL("&:"+default$):e%=TRUE
180 ENDIF
190 REPEAT
200 READ A%,A$
210 IF A%<255 THEN
220 IF e% THEN
230 d$="N" :IF (d% AND (1«A%))>0 THEN d$="Y"
240 ELSE d$=" II

250 ENDIF
260 PRINTA$;" (bit ";A%;")";TAB(55);d$;TAB(60)"Y/N? ...
' 270 B%=GET AND &:DF
280 IF B%=13 THEN
290 B%=-(d$="Y")
300 ELSE B%=-(B%=ASC"Y")
310 ENDIF
320 IF B%=1 THEN PRINT"Y" ELSE PRINT"N"
330 flag%+=B%<<A%
340 IF A%=6 THEN bit6%=B%
350 ENDIF
360 UNTIL A%=255
370 PRINT'"The following options need decimal input (

or Return to copy)"
380 READ A$,G%,B$
390 shift%=0
400 WHILE A$<>"Z" AND NOT(shift%=16 AND bit6%=1)
410 shift%=VAL(LEFT$(A$,2))
420 IF e% THEN
430 de%=(d%>>>shift%)AND(2~G%-1)
440 ELSE de%=0
450 ENDIF
460 PRINT B$;" (bits ";A$;")";TAB(5S);de%;:INPUT TAB(

60);C$
470 IF C$="" THEN
480 C%=de%
490 ELSE C%=VAL C$
500 ENDIF
510 flag%+=(C%<<shift%)

83

Wimp Programming for All

84

520 READ A$,G%,B$
530 ENDWHILE
540 PRINT'"Icon flag= &";-flag%
550 END
560
570 DATA O,Contains text
580 DATA 1,Icon is a sprite
590 DATA 2,Icon has border
600 DATA 3,Horizontally centred
610 DATA 4,Vertically centred
620 DATA 5,Filled background
630 DATA 6,Text is anti-aliased
640 DATA 7,Needs task to redraw icon
650 DATA 8,Icon data is indirected
660 DATA 9,Text is right justified
670 DATA 10,If selected with Adjust keep ESG
680 DATA 11,Display sprite if any at half size
690 DATA 21,Icon (already) selected
700 DATA 22,Icon not selectable (shaded)
710 DATA 23,Icon has been deleted,255,
720 DATA 12-15,4,Icon button type
730 DATA 16-20,5,Exclusive selection group no
740 DATA 24-27,4,Foreground colour
750 DATA 28-31,4,Background colour,Z,0,Z

Chapter 6: Menus
The Wimp menu system - Creating a menu - Menu structure - Menu items - Menu
icon flags and data - Menu positioning - Menu selection - Handling Adjust - Ticking
and shading items - Submenus - Dialogue boxes - Implementing more than one menu

THE WIMP MENU SYSTEM
We come now to the last of the four major features of the Wimp system as
expressed in the acronym itself. We have accounted for Windows, Icons and
Pointers (the latter by implication since the actions of the mouse and
pointer largely determine the behaviour of the rest of the system), and now
it is finally the turn of menus.

Misc
Save F3
Select
Edit
Display

Help
warnn{
Quick search
Clipboard
Markers
Set filetype
Macros
Hardcopy
User Co111111ands ¢

A typical Wimp menu structure

Menus are handled by the Archimedes Wimp in a manner consistent with
other aspects of the system, and if you have understood the concepts
introduced so far, what follows in this chapter should have a familiar feel to
it. Menus are generated by calling the SWI Wimp_CreateMenu (&40004).
This call requires a large parameter block (mblock) to specify all the
relevant data, including the text (or sprite) for each menu item, whether an
entry is ticked, whether it has a right arrow indicating further options (or
windows), the colours to be used and so on. Details of the parameters are
shown in Figures 6.la - 6.lc.

85

Wimp Programming for All

86

R1 = pointer to menu block (see Figure 6.1b)
or -1 to close any active menu

R2 = x co-ordinate of top-left of top level menu (OS units)
R3 y co-ordinate of top-left of top level menu (OS units)

Figure6.1a
Parameters for SWI

"Wimp _CreateMenu" (&400D4)

Menu block:
mblock+O

12
menu title (or null string)
title foreground and frame colour
title background colour 13

14
15
16
20
24
28

menu work area foreground colour
menu work area background colour
width of menu
height of each menu entry
vertical gap between items
menu items (24 bytes each) - see Figure 6.1 c

Figure 6.1b
Menu block for Wimp_CreateMenu

Each menu item:
bytes 0-3 menu flags:

bytes 4-7

bytes 8-11
bytes 12-23

Bit Meaning when set

O display tick to left of item
1 dashed underline to separate item
2 item is writable
3 generate message when moving to submenu
7 this is last item in menu

all other bits must be zero

submenu pointer (>=&8000) or
window handle (1-&7FFF) or
-1 if none
menu icon f lags (as for normal icon)
menu icon data (as for normal icon)

Figure 6.lc
Menu item data

(see text for variations in RISC OS 3)

Chapter 6: Menus

Unlike the Wimp_CreateWindow call, which we described in Chapter 2,
Wimp_CreateMenu actually puts the menu on the screen. The Wimp also
handles the user's actions; for example, a click outside the menu area will
remove the menu from the screen, while choosing an item from the menu
will cause the Wimp to inform the task through Wimp_Poll reason code 9
(menu selection). The task can then just check the parameter block returned
by the Wimp to find out which selection the user has made.

CREATING A MENU
The best way to see how the menu system works is to look at a real
example. You will be aware by now that most applications which are
installed on the icon bar have a menu which can be accessed by clicking the
Menu button over the icon bar icon. Assuming that you have added the
listings in the last chapter to OurTask, and the program therefore installs its
icon on the icon bar, we can easily implement a simple menu.

Add Listing 6.1 to OurTask's !Runlmage program as before, and then run it.
You will see that clicking Menu over the icon bar icon now displays a
menu, albeit with only one item, Quit. However, selecting this item still has
no effect - this is because we have not yet dealt with the program's response
to the Wimp_Poll reason code which tells us that the selection has actually
been made.

Listing 6.1

160 DIM block% 255,imenu% 51
440 RESTORE 20000:PROCsetupmenu(imenu%)
860 DEF PROCsetupmenu(menu%)
870 READ title$,num%:$menu%=title$
880 width%=(LEN(title$)-2)*16
890 menu%!12=&00070207:menu%!20=44:menu%!24=0
900 ptr%=menu%+28:FOR i%=1 TO num%
910 READ mflags%,subptr%,item$
920 !ptr%=mflags%:ptr%!4=subptr%
930 ptr%!8=&7000021:$(ptr%+12)=item$
940 a%=(LEN(item$)+1)*16
950 IF a%>width% width%=a%
960 ptr%+=24:NEXT
970 menu%!16=width%
980 ENDPROC
990

2260 WHEN 2:PROCshowmenu(imenu%, !block%-64,140)

87

Wimp Programming for All

2400 DEF PROCshowmenu(menu%,mx%,my%)
2470 SYS "Wimp_CreateMenu",,menu%,mx%,my%
2480 ENDPROC
2490

20000 DATA OurTask,1,&80,-1,Quit

Adding this listing has effectively made three major changes to the
program. Firstly, a menu block is set up during the initialisation process by
PROCsetupmenu. Secondly, PROCibar (which responds to button clicks over
the icon bar icon) has now been extended to take account of clicks with
Menu (line 2260). Thirdly PROCslwwmenu has been added, which creates
and displays the menu in response to such clicks. PROCsetupmenu in
particular looks a little complex, but it has been designed as a general
purpose procedure which can be called for each menu that needs to be s.et
up. We will describe it in detail in a moment, but first we need to make a
couple of comments about the parameter block used for this purpose.

We mentioned in the very first chapter of the book that there are some
circumstances in which a parameter block for a SWI call requires a separate
area of memory; i.e. you cannot use the same block that you are using for
Wimp_Poll and all the other SWI calls we have discussed so far. The block
required for Wimp_CreateMenu falls into this category. This is because the
Wimp uses the information directly from the block to maintain the menu as
long as it is displayed on the screen, so it must not be corrupted by any calls
to Wimp_Poll or other SWis which would occur between displaying the
menu and processing a selection.

It would be quite possible to set aside one block specifically for menus
(since you can only ever have one menu structure visible on the screen at
any one time), and insert the data for the menu which is to be opened
immediately before calling Wimp_CreateMenu. However, the approach we
have adopted in our program is to set up a block containing the menu data
as part of the initialisation process when the program is first run, and then
whenever a menu is needed we simply pass the address of that block to
PROCshnwmenu which opens the menu by calling the SWI. This means, of
course, that if we add further menu structures to our program (including
any submenus) we must reserve a further block of memory for each one,
but for the moment we only have one menu, for which we have reserved a
block at imenu% (line 160). A menu block must be 28 bytes long plus 24 ~
bytes for each menu item. Since we have only one item in our menu so far,
we have therefore reserved a block of 52 bytes.

88

Chapter 6: Menus

MENU STRUCTURE
PROCsetupmenu sets up the parameter block. We have written the procedure
in such a way that it can be used as a general menu set-up procedure which
takes its data from a DATA statement elsewhere in the program. This will
allow you to alter the structure of the menu simply by altering the DAT A
statement, and to use the same procedure to set up further (and more
complex) menus later.

The DATA statement contains first the menu title string, then the number
of items in the menu. This is followed, for each item in turn, by its menu
flags, submenu pointer and text. PROCsetupmenu reads the first two items,
placing the title at the start of the block (line 870). Unlike icons or window
title bars, a menu title cannot be indirected, and so must be no more than 12
characters in length. For a task's main menu, whether opened from the icon
bar or from a window, the menu title would normally be the task name, and
this is what we have done here.

Rather than specify the menu colours as single bytes, as we did when
creating our window in Chapter 2, we have simplified the program and
inserted just one hex value representing the four colours required at
mblock+ 12 to mblock+ 15 (line 890). You should be proficient in
understanding hex numbers by now, and so you will see from this that we
have chosen black (colour 7) for the title foreground, grey (2) for the title
background, black again for the work area foreground (i.e. the colour in
which the menu item text will be displayed), and white (0) for the work area
background. These are the standard recommended colours for menus and
there is little point in altering them. Thus you can consider &00070207 (or
just &70207) as a standard value to place in the block for all your menus.

The next three data words in the menu block relate to the general layout of
the menu items. The menu width (mblock+ 16) determines how wide the
Wimp draws the menu when it appears on the screen, in OS units. A
sensible value for this is:

(maxlen%+1)*16
or:
(titlelen%-2)*16

whichever is the greater (where maxlen% is the length of the longest item in
the menu, and titlelen% is the length of the menu title) . The menu item
height (mblock+20) is normally 44 OS units, and the vertical gap between
items (mblock+24) is zero. It is not normally necessary to change these
values. In PROCsetupmenu the width is calculated from the menu items as
they are read in, and so must be inserted later. The height and gap,
however, are put into the block at line 890.

89

Wimp Programming for All

MENU ITEMS
The menu item data shown in Figure 6.lc is largely self-explanatory.
However, one or two things require a more detailed description. The word
at bytes 4-7 is important, since it allows you to specify that a submenu
should open up from that particular item. If the value of this word is greater
than zero, the Wimp will automatically display an arrow to the right of the
menu item, and with RISC OS 2 will treat the value as a window handle (if
less than &8000) or a pointer to a further menu block (if &8000 or greater).
Under RISC OS 3, window handles are simply pointers to the address in
memory where the Wimp has stored the window definition, and so may be
any 32-bit value. The Wimp itself will determine, from the structure pointed
to, whether it is a window or submenu that needs to be opened.

The window or menu thus indicated will be displayed as a submenu
whenever the pointer is moved across the arrow. In Listing 6.1 we have
used a value of -1 to indicate that there is no submenu, but you can easily
experiment by replacing this with the handle of our task's main window, as
follows:

20000 DATA OurTask,l,&80,whandle%,Quit

Now if you run the program you will see an arrow to the right of the Quit
option; moving the pointer across this displays the window we have seen
before.

You will notice that in this case the window disappears as soon as the
pointer is moved back onto the menu, or the mouse is clicked. This is
because windows opened in this way behave exactly like menus in this
respect. The ability to open windows in a menu structure allows the
programmer to implement what are known as dialogue boxes. A dialogue box
is a window which displays information and / or requests user input,
usually opened as part of a menu and pertaining to the menu item from
which it was opened. You can see a good example of a dialogue box by
choosing the Info option which is available on the icon bar menu of most
commercial applications, including Paint, Draw and Edit. In this case, the
dialogue is one-way (i.e. no input from the user is required), but in the case
of a save box (again, as implemented by most applications including the
three mentioned above) the dialogue is two-way to allow the user to specify
a filename.

If a menu item has a submenu, and if bit 3 of the menu flags is unset for that
item, the Wimp will simply open the submenu or dialogue box without
further ado whenever the pointer moves across the arrow. But if bit 3 is set,
the Wimp will warn your task if this action occurs, using the Wimp

90

Chapter 6: Menus

messaging system which will be described in Chapter 8. This is useful if, for
example, you want to calculate data before displaying it in the dialogue
box, or to set the file icon in a save box to a particular filetype sprite before
the box is opened. We will not be making use of this for the moment, but
we will be covering it in Chapter 8, and the listing in that chapter will
include an example of a submenu warning.

The other bits of the menu flags are self-explanatory. In OurTask, we do not
want this particular item to be ticked, writable or followed by a line of dots,
so bits 0-3 should be left as zero; however, our single item is the last item in
the menu, which means that bit 7 must be set. This gives a value of &80 for
the menu flags, and we have used this value in the DAT A statement in line
20000.

MENU ICON FLAGS AND DATA
The icon flags and icon data have exactly the same format as for a standard
icon, as described in the previous chapter (see Figures 5.4 and 5.6).
However, not all the flags are now relevant. As we mentioned earlier in the
book, the Wimp forces the button type of menu items (bits 12-15) to 9
(Menu icon). If the item is to be writable you should use the appropriate
menu flag instead, as mentioned above. The ESG bits (bits 16-20) are also
ignored, as are bits 4 (vertically centred) and 7 (requires task's help). Of the
other bits, for a standard menu item you only need to set the colours (bits
24-31), a filled background (bit 5) and of course the text bit (bit 0). Assuming
that you use the standard colours of black on white (which you should
always do for the sake of uniformity), this results in a flags byte value of
&7000021, which is what we have used at line 930. You would normally
only deviate from this value in two circumstances: if the item's text is longer
than 12 characters you would set the indirected bit (bit 8), giving a value of
&7000121, and treat the item exactly as you would treat an indirected text
icon; while if the menu item is to be shaded you would set the shaded bit
(bit 22), which gives a value of &7400021.

Acorn's guidelines for menu items state that the first word should start with
a capital letter, while subsequent words should be entirely in lower case.
Thus your menu item would read "Save choices" rather than "Save
Choices". Each item must also be left-justified, which is why we have left
the horizontal formatting bits (bits 3 & 9) unset in the flags word. As we
have said before, it makes a great deal of sense to follow the guidelines,
since in a multi-tasking environment it is important that all applications
have a common feel to the user.

91

Wimp Programming for All

MENU POSITIONING
Having set up the menu block at the start of the program as a permanent
data structure, all that is needed to open the menu on screen is to call
Wimp_CreateMenu with a pointer to the menu block in Rl, and the
required x and y co-ordinates of the menu in R2 and R3. This is achieved in
our program by PROCsfwwmenu (lines 2400-2480) which takes as its three
parameters the values required by Rl-R3. OurTask has so far only set up an
icon bar menu, so the procedure is called from PROCibar when a mouse
click over the icon bar icon with the Menu button is detected.

The positioning of the menu requires a little elaboration. The menu should
always be opened in relation to the position of the pointer, since it would
make little sense for the user if the menu appeared at some distance from
where the click was actually made. The x and y pointer co-ordinates can be
read from block+O and block+4 respectively when poll reason code 6
(mouse click) is returned. Acorn's guidelines cover the positioning of the
menu in relation to these values. The left-hand edge should be 64 OS units
to the left of the pointer, while the vertical position depends on whether it is
an icon bar menu or not. If it is, then the bottom of the menu must be 96 OS
units from the bottom of the screen. If it is not, the bottom edge of the menu
title bar should align with the pointer.

In practice, this means that a menu should normally be opened with a
horizontal position of !block-64, while a menu which is not opened from the
icon bar icon should have a vertical position of block!4. For an icon bar
menu, provided you have used the standard menu item height and gap of
44 and 0 respectively, the value for the vertical position will be 140 for a
single-item menu (i.e. 96+44), with 44 added for each subsequent item (plus
an additional 24 units for any dotted line between items). If you look at line
2260 of Listing 6.1, you will see that we have indeed passed values of
!block'Yi,-64 and 140 to PROCsfwwmenu.

MENU SELECTION
We will expand our menu structure later in the chapter, but before any
menu can be of use to the task, some method must be provided to decode
selections made by the user. To do this, we need to insert an additional line
into the Wimp poll CASE statement to respond to reason code 9. In OurTask,
we have only one menu with only one item, Quit, so we know for certain
that if this reason code is ever returned, it means the user wishes to quit.
Thus we can simply add the following line to our program:

630 WHEN 9:quit%=TRUE
Now when you run the program, you will find that choosing the Quit
option from the menu terminates the task.

92

----.._

Chapter 6: Menus

In the majority of cases, however, it is not as simple as this. In practice, a
program may have more than one menu structure, and each menu will
normally have more than one item, with the possibility of submenu items
as well. To decode the correct selection, we must make use of the
information supplied by the Wimp. The actual parameter block returned
with reason code 9 is as follows:

block+O item in main menu which was selected
(starting from 0)

block+4 item in first submenu which was selected
block+8 item in second submenu which was selected
and so on

This list is terminated by a word containing the value -1; for example, if the
item selected is in the first submenu, then the word at block+8 would be -1.

To see this in practice, we will expand our menu to include a few more
items, and instead of simply quitting when a selection is made, we will add
a procedure to decode it and perform the appropriate action. Add Listing
6.2 to the OurTask program and then run the program. You will now see
that as well as the Quit option, there are three further options: Fahrenheit,
Celsius and Kelvin. Try opening the program's window and see the effect of
choosing one of these extra options.

Listing 6.2

160
630

2260
2500
2510
2550
2560
2570
2580
2590
2600
2610
2620
2760
2780
2790

DIM block% 255,imenu% 123
WHEN 9:PROCinenuselect
WHEN 2:PROCshowmenu(imenu%,!block%-64,272)
DEF PROCmenuselect
sell%=!block%
CASE sell% OF
WHEN 0,l,2:FOR i%=0 TO 2
!block%=whandle%:block%!4=i%
IF i%=sel1% block°'o!8=&200000 ELSE block%!8=0
block%!12=&200000
SYS "Wimp_SeticonState",,block%
NEXT
WHEN 3:quit%=TRUE
ENDCASE
ENDPROC

20000 DATA OurTask,4,0,-1,Fahrenheit,0,-1,Celsius,0,
-1,Kelvin,&80,-1,Quit

93

Wimp Programming for All

We have added the additional menu items by expanding the DATA
statement at line 20000, not forgetting at the same time to increase the size
of the reserved block at line 160, and to alter the vertical position of the
menu in line 2260.

The rest of the additions to the program consist of our decoding routine.
Firstly, we have now altered line 630 so that our response to reason code 9
is to call PROCmenuselect. Since our menu only has one level, we are only
interested in the value at block+O, and a variable sell% is set up to hold this
value. A simple CASE statement is used to determine the action to be taken
as a result of the selection. If the value is 0, 1 or 2 (i.e. one of the first three
items on the menu), the corresponding radio icon in the window is selected, --..
and the others deselected. This is done by using Wimp_SetlconState, which
we described in Chapter 5 (refer to Figure 5.8 and the accompanying text if
you are not clear about the process involved). The loop beginning at line
2560 cycles through the three icons. In line 2580 the selected bit (bit 21) in
the Clear word is set if the icon number corresponds to the menu selection,
and zero if it does not. By setting the bit in the EOR word in both cases, the
bit in the icon flags will now be set by the call to Wimp _SetlconState for
the corresponding icon, and cleared for the other two.

If the value of sell% is 3, this means the Quit option has been chosen, and
quit% is set to true as before.

HANDLING ADJUST
It is a RISC OS convention that clicking with the Adjust button on a menu
entry should have the same effect as Select, except that the menu tree
should be kept open. This is obviously a useful convention, since you often
need to make a number of
consecutive selections from a menu,
and it would be very tiresome if the
whole menu tree always disappeared
with each selection.

To make a menu system perform in
this way is easy. All you need to do is
to use SWI Wimp_GetPointerlnfo
(&400CF) each time a menu selection
is reported to the task via poll reason
code 9. Figure 6.2 gives details of the
block returned by this call.

94

block+O
4
8

12

16

mouse x
mousey
button state
window handle
(-1 =background,
-2 = icon bar)
icon handle

Figure 6.2
Block returned by SWI

"Wimp_GetPointerlnfo" (&400CF)

Chapter 6: Menus

By using Wimp_GetPointerlnfo you can read the button state to see if the
user made the selection with Select or Adjust. If Adjust was used, then all
you have to do is call Wimp_CreateMenu before returning to the poll loop.
This causes the Wimp to re-open the menu tree at the same place, and in
such a way that it appears never to have been closed. Of course, if the user's
selection necessitates a change in the menu data (such as placing a tick
against an item, which we will look at later), the data must be updated
before calling Wimp_CreateMenu or the new state of the menu will not be
apparent on the screen. To handle the Adjust button in OurTask; all you
need to do is add Listing 6.3. You will now find when you run the program
that choosing a menu option with Adjust will have the same effect as with
Select, but the menu will stay on the screen.

Listing6.3

2520 SYS "Wimp_GetPointerinfo 11 ,,block%
2530 button%=block%!8
2770 IF button%=1 PROCshowmenu{imenu%,0,0)

Lines 2520-2530 call Wimp_GetPointerlnfo and read the button state from
block+8 into button%. Then in line 2770, after the selection has been decoded,
button% is evaluated and if it is 1 (meaning Adjust was pressed),
PROCshowmenu is called. The menu co-ordinates are irrelevant this time,
since the Wimp will recognise this as the menu which is currently open
anyway, and will re-open it in exactly the same place.

TICKING AND SHADING ITEMS
When using RISC OS applications, you may have noticed that sometimes a
menu item is accompanied by a tick at the left-hand side, while at other
times it is shaded. The reasons for doing this are entirely up to the task, but
normally a tick is used to indicate that a particular option is one which is
currently in force, while a shaded item is an option which cannot currently
be selected (and the Wimp reinforces this, since a shaded icon cannot be
selected by the user anyway). The very existence of ticked and shaded items
implies that these may change during the course of using the program, and
so if you are using a permanent menu block as we have done here, it is
necessary to modify the data in the block before calling Wimp_CreateMenu
to take account of any changes that may have been made to the status of the
items.

95

Wimp Programming for All

In the OurTask program as it currently stands, it would be logical for the
menu to reflect the current state of the radio icons by ticking the
corresponding menu item. Adding Listing 6.4 will implement this.

Listing 6.4
170 quit%=FALSE:app$="0urTask":iconsel%=0

1530 WHEN whandle%:iconsel%=block%!16
2420 FOR i%=0 TO 2
2430 a%=imenu%+28+i%*24
2440 IF i%=iconsel% THEN ?a%=(?a% OR 1) ELSE ?a%=(?a%

AND 254)
2450 NEXT
2610 NEXT:iconsel%=sel1%

We have now introduced a variable iconse/% which holds the number of the
currently selected icon of the three in the radio group. A click over one of
these icons now sets this variable to the icon number (in PROCclick at line
1530), as does choosing the appropriate option from the menu (in
PROCmenuselect at line 2610). When the menu is actually displayed by
PROCshowmenu, lines 2420-2450 cycle through the icons. Line 2430
calculates the position in the menu block of the menu flags for each icon;
then if it is currently selected, line 2440 sets bit 1 of the menu flags to mark
it as ticked, while if it is deselected the same line unsets the bit. If you now
run the program, you will see that the ticked option always corresponds to
the currently selected radio icon, whether it is altered from the menu or by
clicking on the icon itself. If you use Adjust to make the menu selection, you
will see that any change in the position of the tick is reflected immediately.

SUBMENUS
As we have already mentioned, any Wimp menu can have submenus,
indicated by an arrow to the right of a menu entry, and these may
themselves have submenus and so on. There is in fact a SWI call
Wimp_CreateSubMenu, but this is usually only used if the programmer
requires the task to intervene in some way when a submenu is accessed by
the user, as we indicated earlier. We will look more closely at this call in
Chapter 8 when we consider the submenu warning message. Normally,
however, the whole menu system, complete with its submenus, is created
by placing a suitable data block in memory for each menu and submenu,
and then calling Wimp_CreateMenu in response to the user clicking Menu
at the appropriate place. Provided that we have inserted the address of each ~
submenu's data block into the menu data of the associated entry in the
parent menu or submenu, the Wimp will handle the whole job for us.

96

Chapter 6: Menus

To see how this works we will implement a single submenu by removing
the three additional options from the main menu and placing them into a
submenu, accessed by an entry in the main menu entitled "Scale". Adding
Listing 6.5 to the current version of the program wiJI achieve this. The
result is shown in Figure 6.3.

Listing 6.5

160 DIM block% 255,imenu% 75,smenu% 99
450 RESTORE 20010:PROCsetupmenu(smenu%)
570

2260 WHEN 2:PROCshowmenu(imenu%,!block%-64,184)
2430 a%=smenu%+28+i%*24
2510 sel1%=!block%:sel2%=block%!4
2560 WHEN O:IF sel2%<>-1 THEN
2565 FOR i%=0 TO 2
2580 block%!8=-&200000*(i%=se12%)
2610 NEXT:iconsel%=se12%
2615 ENDIF
2620 WHEN l:quit%=TRUE

20000 DATA OurTask,2,0,smenu%,Scale,&80,-1,Quit
20010 DATA Scale,3,0,-1,Fahrenheit,0,-l,Celsius,&80,

-1,Kelvin

The first thing we must do is
reserve a fresh area of memory
for the submenu block; this
results in smenu% being
dimensioned at line 160. Next the
submenu block is set up by
calling PROCsetupmenu again in
line 450, with the data pointer at
a new DATA statement in line
20010. When the menu is
displayed, the calculation of the

Celsius
Ielvin

Figure 6.3
A submenu implemented by Listing 6.5

position of the tick now relates to smenu% and not imenu% as before, and
this is taken care of in line 2430. The majority of the changes that we have
made affect PROCmenuselect. Firstly, we must now set up a new variable
sel2% to hold the value of any selection made from the submenu. Then the
main CASE statement must be altered to reflect the fact that there are now
only two choices on the main menu. If sell% is zero, this means that the
selection was made from option 0 on the main menu, but this could occur

97

Wimp Programming for All

both if Scale was chosen directly from the main menu, or if one of the
submenu options was chosen. In the former case, block+4 (and hence sel2%)
will hold -1, while in the latter case it will hold the number of the option
chosen. To ensure that the user has in fact clicked on a valid submenu item,
we have included the IF ... ENDIF construct at lines 2560 and 2615 so that the
icons are only altered if sel2% does not hold -1.

In this particular example, choosing any of the submenu options will
activate the same process, namely setting the state of the icons. Normally a
submenu would contain a set of options each of which requires a separate
action on being selected. This is easily catered for by arranging the structure
of PROCmenuselect as a series of nested CASE statements. For example, if
your main menu had two options as above, and the first item led to a
submenu with three options, the structure of the procedure would look
something like this:

sel1%=!block%:sel2%=block%!4
CASE sell% OF

WHEN O:CASE sel2% OF
WHEN 0:
WHEN 1:
WHEN 2:

ENDCASE
WHEN 1:

ENDCASE

DIALOGUE BOXES
We suggested earlier as a brief experiment that you could place the handle
of OurTask's main window into the menu block to simulate a dialogue box.
Listing 6.6, when added to the existing program, creates a more
conventional dialogue box:
a standard Info box similar
to those used by most
commercial applications
(see Figure 6.4). To do this,
we need to create a second
window, and this requires
some amendments to
FNcreate_window. We need
to add two further
parameters when calling
the function: the window
flags and the title.

98

Our Task
lili"'P test

.81 an Jilr i g I ey
1.0

Figure 6.4
Dialogue box produced by Listing 6.6

Chapter 6: Menus

Listing 6.6

30 REM Updated to Chapter 6
160 DIM block% 255,imenu% 99,smenu% 99
200 whandle%=FNcreate_window(200,200,300,500,200,20

,&FF000012,"Test window")
270 info%=FNcreate_window(0,0,580,204,0,0,&84000012

,"Prog info")
280 RESTORE 15000
290 FOR i%=1 TO 4:READ text$
300 a%=FNcreate_icon(info%,0,-i%*48-4,144,44,&17000

211, text$, 0, 0, 0)
310 NEXT
320 FOR i%=1 TO 4:READ text$
330 a%=FNcreate_icon(info%,148,-i%*48-4,424,44,&700

003D,text$,0,0,0)
340 NEXT

1000 DEF FNcreate_window(x%,y%,w%,h%,extx%,exty%,fla
gs%, title$)

1140 block%!28=flags%
1400 $(block%+72)=title$
2260 WHEN 2:PROCshowmenu(imenu%,!block%-64,228)
2560 WHEN l:IF sel2%<>-1 THEN
2620 WHEN 2:quit%=TRUE

15000 DATA Name:,Purpose:,Author:,Version:
15010 DATA OurTask,Wimp test,Alan Wrigley,1.0
20000 DATA OurTask,3,0,info%,Info,0,smenu%,Scale,&80,

-1,Quit

Line 270 creates a new window, and lines 280-340 fill it with the required
icons. This is done in two groups; those down the left-hand side ("Name",
"Purpose" etc.) in the loop from lines 290-310, and the rest in the second
loop (lines 320-340). You should be able to work out the characteristics of
each group of icons by studying the values of the icon flags. Finally, a third
option, Info, is added to the main menu and the handle of the info box is
supplied in the menu block. The info box will now appear whenever the
pointer moves across the arrow from the main menu option. You will
notice that while the info box is on the screen, you can drag it around with

.---..._ the mouse. This is because our task is responding to poll reason code 2
(open window request) using the window handle returned by the Wimp,
which in this case will be the info box handle .

99

Wimp Programming for All

IMPLEMENTING MORE THAN ONE MENU
So far we have only created one menu structure, based on the icon bar. But
most tasks have at least two menu structures; it is quite common for a click
with Menu over a task's window to produce a different menu from that
which appears over the icon bar icon. This is quite simple to achieve - all
you need to do is create a separate data block containing the data for the
second menu structure, and use the address of this instead as a parameter
when calling PROCshowmenu. However, there is one important point to take
into account: as far as the Wimp is concerned, you have simply asked it to
open a menu, and it has no idea whether this is your only menu or one of
several. This means that you must keep a record of which menu is opened,
since otherwise when the menu selection is returned through Wimp_Poll,
PROCmenuselect will not know from which menu the selection has been
made.

The simplest way to do this is to set a variable (for example menuopen%) to a
different value for each menu when it is opened, and read this variable at
the start of PROCmenuselect. Since each menu has a separate data block in
memory, we can use this as the value for menuopen%, safe in the knowledge
that the value will be unique to that menu structure. An extra line in
PROCshowmenu will set this up:

2410 menuopen%=menu%

So if PROCshowmenu is called from the icon bar, menuopen% will have the
same value as imenu%, while if it is called from a window it will have the
same value as the block which defines the window menu (perhaps
wmenu0

/.,). Having done this, you then need to add a further CASE statement
to PROCmenuselect at the top level:

2540 CASE menuopen% OF ,....._,_
2550 WHEN imenu%:CASE sell% OF

Incidentally, don't be tempted to leave out line 2410 and use menu% directly
as the value of the open menu. This will not work, since menu%, being a
parameter of PROCshowmenu, is local to that procedure and will therefore
have a value of 0 if used elsewhere. You must set a global variable to the
value as we have done above with menuapen%.

We have now covered all the basic elements in a Wimp program, and our
acronym is complete. You should find by now that the concepts we are
describing are easier to understand, as you get used to the way in which the
Wimp works. If not, do please re-read this chapter, and if necessary ,---...._
previous chapters, before you go on. The techniques we have covered so far
are quite adequate to enable you to construct your own simple programs,

100

Chapter 6: Menus

and it is worth taking a short break at this point to see whether you can
design and program a useful application for yourself in order to gain some
experience in using the Wimp. We have not yet covered the loading and
saving of data, but there are many useful functions which could be
performed by using the basic techniques. For example, you could design a
currency converter which takes a value from the user via a writable icon,
and converts it into one of a range of foreign currencies, selectable from a
group of radio icons, or from a menu perhaps.

You should be able to think of many similar examples of applications which
can easily be implemented by windows, icons and menus. Now is the time
to start playing around with these ideas, which can then be built on as we
cover the more advanced aspects of Wimp programming in the rest of this
book.

The main elements of a Wimp application -
windows, icons and menus

101

7. Redrawing Windows

Introduction to user-redraw - The redraw process - Example program - Forcing a redraw
- Efficient redraws - Redrawing text - Redrawing text held in an array - Redrawing
graphics

INTRODUCTION TO USER-REDRAW
In the program listings introduced so far in this book, we have made the
assumption that all displays of information in the program's windows can
be achieved by using icons. When this is the case, the Wimp can usually
redraw any window on the screen without any help from the task itself.
However, there are many applications which would find it impossible or
inappropriate to use icons to display certain information. For example, it
would be very laborious for Edit to handle an ever-changing screen full of
text by using writable icons, while Draw would find it impossible to display
even the simplest picture without the ability to draw it directly onto the
window as a graphic object.

In fact, we have already hinted in Chapter 2 that it is possible to do just that,
when we described window flag 4 (Wimp needs no help from task to
redraw window), and again in Chapter 3 when we said that poll reason
code 1 (redraw request) would only be returned by the Wimp if that flag
was unset. We also said that the redrawing of the window must be carried
out in a special way, and in this chapter we will show you how to do this.
There is quite a lot of detail and theory involved, so as usual we recommend
that you re-read any sections that are unclear, and also experiment as much
as possible with the program.

THE REDRAW PROCESS
We have seen that when Wimp_Poll returns a reason code of 2 this
constitutes a request by the Wimp to open (or re-open) a particular
window. This occurs when you click on the Adjust size icon or the title bar
of a window, when the window is dragged around, or when scroll bars are
moved to a new position. The usual way for the task to respond to this is to
call Wimp_OpenWindow, just as we have done in line 550 of OurTask. This
puts the onus back on the Wimp to manage any redrawing of the window
which is necessary.

102

Chapter 7: Redrawing Windows

In response to our call to Wimp_OpenWindow, the Wimp will begin the
business of opening (or re-opening) the nominated window. During this
process it checks window flag 4 (see Figure 2.8), and if this is set, it puts the
window on the screen. Many windows, however, will have bit 4 unset,
meaning that the task must be invoked to draw text or graphics in the
window. In such cases, if the user's action results in a previously obscured
part of the window becoming visible, the Wimp will immediately return a
reason code of 1 (redraw window request) to the task, and the task must
respond to this in a special way. It cannot simply respond by directly
drawing text or graphics onto the screen; the window in question might still
be partly obscured by another.

What the task must do is to put into operation a well-defined process, and
this must be done immediately; it must not make any other Wimp calls
until it has serviced the redraw request in the correct manner. First of all the
task must call Wimp_RedrawWindow (&400C8), and then repeatedly call
Wimp_GetRectangle (&400CA) until the Wimp tells it that no more parts
of the window need updating. Details of the parameter block returned by
both these calls are given in Figure 7.1.

RO=O No more updating required
RO>O Further updating required

R 1 points to a parameter block:

block+O Window handle
4 Visible area minimum x co-ordinate
8 Visible area minimum y co-ordinate

12 Visible area maximum x co-ordinate
16 Visible area maximum y co-ordinate
20 Scroll x offset relative to work area origin
24 Scroll y offset relative to work area origin
28 Current graphics window minimum x co-ordinate
32 Current graphics window minimum y co-ordinate
36 Current graphics window maximum x co-ordinate
40 Current graphics window maximum y co-ordinate

Figure 7.1
Infonnation returned by

SWI "Wimp_RedrawWindow" (&400C8) and
SWI "Wimp_GetRectangle" (&400CA)

103

Wimp Programming for All

The first seven parameters returned in the block (block+O to block+24) are
fairly self-explanatory. However, the last four parameters, the co-ordinates
of the current graphics window, need further explanation. When the call to
Wimp_RedrawWindow is made, the Wimp decides which parts of the
window need redrawing. This could be the whole window, but if it is
partially covered by other windows, it could be a series of rectangles which,
taken together, add up to the total area on display (see Figure 7.2). So the
Wimp returns the co-ordinates of each of these rectangles in tum until there
are no more to be updated. These co-ordinates make up the current
graphics window detailed in Figure 7.1.

Figure 7.2
Window Updating.

If the Wimp needs to update Task 1,
it will split the area into rectangles

A and B, and request in turn that
each of the two be updated

Each time the Wimp returns a
rectangle for updating, it sets a
clipping window to the
perimeter of the rectangle,
clears the area to the
background colour (unless the
window's work area has been
set to transparent - see Figure
2.3), and issues a VDU 5
command (write text at the
graphics cursor). Finally it fills
the parameter block, and
returns the task a flag in RO. If
this is non-zero it indicates that
the parameter block contains a
rectangle to be updated, while
if it is zero this means that there
is no more updating to be done,
and the redraw loop can be
terminated.

The task in its tum redraws that area with whatever text or graphics it
requires, and then (provided that the flag is not zero) calls
Wimp_GetRectangle, which sets up the next rectangle in the sequence.
This continues (with a whole series of calls to Wimp_GetRectangle) until
all the rectangles in the window which had become invalid have been
updated, and the job is complete. If you look carefully as you use the
Desktop you can often see this process in action. For example, if you have a
complex drawing displayed in a Draw window, and you remove a window
or menu tree which previously obscured all or part of it, the Wimp will
update the Draw window bit by bit.

104

Chapter 7: Redrawing Windows

Thus the whole redraw process will be accomplished by a segment of code
which looks something like this:

SYS "Wimp_Redrawwindow",,block% TO flag%
WHILE flag%
REM do the actual updating here
SYS "Wimp_GetRectangle",,block% TO flag%
ENDWHILE

In practice, a task can respond in two different ways to the parameter block
returned. The simplest way is to redraw everything in the whole of the
window's work area when the first rectangle is requested. This relies on the
clipping window to ensure that only those parts of the window which the
Wimp requires will actually be drawn on screen. Of course, if you have a
very large work area (as you might with a text editor full of text for
example) this approach would be impossibly slow, since the task would
need to write the whole text file to the screen every time the Wimp needed
to update even a square centimetre.

A much more efficient (and more complex) approach is for the task to
narrow down the contents of the work area as closely as possible to the
actual segment of window which the Wimp is updating with each
rectangle, and draw this part only (bearing in mind of course, that if you are
dealing with sprites it is not feasible to split them). Initially we will adopt
the former approach in OurTask for simplicity, but later in the chapter we
will look more closely at how to keep
the redrawing process fast and efficient.

EXAMPLE PROGRAM
Add Listing 7.1 to your existing
!Runimage program and run the OurTask
application. The window will now be a
little larger, and alongside the group of
three radio icons you will now see a
vertical coloured bar. The top half of this
bar should be red, and the bottom half
pale blue. On the right-hand side of the
bar you should see three figures
displayed: 212 at the top of the bar, 32 at
the junction between red and blue, and -
523 at the bottom. The window display
produced is shown in Figure 7.3.

Figure 7.3
Window produced by Listing 7.1

105

Wimp Programming for All

Incidentally, having added this listing, we suggest you keep a copy of the
program in its current state, since we will be returning to it in Chapter 9.

Listing 7.1

160 DIM block% 255,imenu% 99,smenu% 99,limits%(2,2)
200 whandle%=FNcreate_window(200,200,500,600,0,0,&F

F000002,"Test window")
350 FOR i%=0 TO 2:FOR j%=0 TO 2
360 READ limits%(i%,j%):NEXT:NEXT
530 WHEN l : PROCredraw

2800 DEF PROCredraw
2810 SYS "Wimp_Redrawwindow",,block% TO more%
2820 ox%=block%!4-block%!20
2830 oy%=block%!16-block%!24
2840 WHILE more%
2850 PROCdraw(ox%,oy%)
2860 SYS "Wimp_GetRectangle",,block% TO more%
2870 ENDWHILE
2880 ENDPROC
2890
2900 DEF PROCdraw(x"/o,y%)
2910 SYS "Wimp_ SetColour",11
2920 RECTANGLE FILL x%+320,y%-260,20,200
2930 SYS "Wimp_ SetColour",15
2940 RECTANGLE FILL x°/o+320,y%-460,20,200
2950 SYS "Wimp_ SetColour",7
2960 MOVE x%+360,y%-64
2970 PRINT;limits%(iconse1%,2)
2980 MOVE x%+360,y%-248
2990 PRINT;limits%(iconsel%,l)
3000 MOVE x%+360,y%-432
3010 PRINT;limits%(iconsel%,0)
3020 MOVE x%+100,y%-520
3030 PRINT"Temperature scale"
3080 ENDPROC

15020 DATA -523,32,212,-273,0 , 100,0,273,373

As you may have guessed, the figures represent the values in the selected
temperature scale for boiling point, freezing point and absolute zero
respectively. The values for all three scales are set up in an array limits% in
lines 350-360.

106

Chapter 7: Redrawing Windows

Line 530 adds a statement to the poll loop to respond to reason code 1 (the
window flags having been altered by the amendment to line 200 such that
flag 4 - Wimp needs no help to redraw - is now unset). The response is to
call PROCredraw, which contains the redraw loop almost exactly as we
described earlier. The program uses lines 2820-2830 to work out exactly
where on the screen our window is to be displayed, and then every time the
Wimp asks for a segment of it to be redrawn, it redraws the lot using
PROCdraw, relying on the clipping window set up by the Wimp to ensure
that only the nominated rectangle is updated each time.

Working out the origin for the redraw is performed very simply in lines
I'""'"'\ 2820 and 2830, but explaining the calculation is a little less simple. Figure

7.4 shows the relationship between visible area, work area and scroll
offsets. Essentially, the Wimp parameter block available to us contains the
visible area minimum and maximum x and y co-ordinates, and the scroll
offsets (as well as information on the co-ordinates of the rectangle within
the window which needs updating, but we are ignoring these since we are
redrawing the whole window anyway). We need to calculate the work area
minimum x and y co-ordinates in terms of the graphics origin. Getting the x
co-ordinate is easy: we just subtract the scroll offset from the visible area
minimum x co-ordinate. For the vertical dimension we take the maximum
visible area y co-ordinate and subtract the vertical scroll offset (which itself
is measured downwards, and will therefore be negative).

)
graphics origin

Figure 7.4

visible area maximum
x and y co-ordinates

Calculating the origin for window redrawing

107

Wimp Programming for All

With this under our belt we can go about the business of writing to our
window, and this is accomplished by PROCdraw. First of all the two sections
of the vertical bar are drawn, using the RECTANGLE FILL command for
each (lines 2920 and 2940). In order to set the colour we wish to use, we
have introduced another SWI call, Wimp_SetColour (&400E6). This serves
to define the current graphics colour. We cannot simply use GCOL for this
purpose because this would give a colour dependent upon the currently set
mode, and multi-tasking programs should wherever possible work in all
modes. The parameter supplied with the call is simply the colour number
(0-15) in the Wimp palette. To get an idea of the range of colours available,
take a close look at the Desktop palette icon. This contains all 16 colours
displayed in numerical order from 0 at the top left to 15 at the bottom right.

Having drawn the vertical bar, we now print the values alongside it. All
text printing under the Wimp is done in VDU 5 mode; i.e. text is written at
the current graphics cursor. For this reason, we need the three MOVE
statements in lines 2960, 2980 and 3000 to enable us to print the figures in
the correct place. Finally a further MOVE/PRINT pair of statements writes
a legend across the bottom of the window (lines 3020-3030). Note the way
we have subtracted from the y co-ordinate in all cases, since the work area
origin is at the top of the window, and all y values within the window must
therefore be negative.

The values printed in the window are calculated by reading the elements of
the array limits% which relate to the current value of iconsel%. You can see
that this is so by closing the window and selecting one of the other two
temperature scales from the icon bar menu, then re-opening the window.
The values will now have changed to those of the scale you have chosen.
However, you will notice that if you change scale by clicking on one of the
radio icons, nothing happens to the window display. This is because the
redrawing of the window is only done in response to requests from the
Wimp to do so - and this will only happen if the window is closed and then
re-opened, or if part or all of it becomes visible after being obscured. Try
altering the scale by clicking on an icon, and then drag another window
across OurTask's window. The values displayed will now be the correct ones
for the chosen scale, because the Wimp has asked for the window to be
updated.

It would be inconvenient to have to close and re-open a window, or drag
others over it, just to update information in this way, and so a call exists --...
which will force the Wimp to issue a redraw request at any time if
necessary. We will look at this in just a moment, but first it is worth
experimenting with PROCdraw. Try altering the colours and positions of the

108

Chapter 7: Redrawing Windows

items, and writing your own text in line 3030. If you replace the string in
the listing with a piece of text more than 25 characters long you will
discover that the right-hand end of it is irretrievably lost. Text does not
automatically drop down on to the next line as it does when printing to a
single-tasking screen in VDU 4 mode.

In other words, if you are using the Wimp, you cannot get text onto the
screen by simply executing a series of PRINT statements. You need to go
about the whole process with a great deal of care. We have already seen
that each PRINT statement must be preceded by a MOVE statement, and
the length of each line of text must be less than the width of the work area.

Moreover, if you have an application which generates some text as its
output, you cannot always PRINT this to the screen the moment that the
information becomes available, because you must have a way to refresh as
much of the screen as the Wimp requires whenever the Wimp requests it.
Thus if you are writing a Cross Referencer say, which displays the names of
functions and procedures in a program file which has been dragged to it,
you must actually write your findings to a buffer area in RAM within the
task program rather than printing them in the first instance; you must then
implement a routine to display the contents of the buffer whenever a
redraw request is received. Clearly you cannot implement a new search for
procedures or whatever each and every time the Wimp needs to redraw the
display. This problem will of course occur in applications of many different
kinds, and its resolution will add a level of complexity to all such programs.

FORCING A REDRAW
Under normal circumstances the initiative for redrawing a window comes
from the Wimp itself, as we have seen so far in this chapter. This will occur
when a previously closed window is opened, or an obscured part becomes
visible, perhaps because the user has scrolled it or moved another window
aside. However, there will be many cases where the task needs to initiate an
update. For example, a clock may need updating every second or minute, or
a character may have been typed into a text editor, or a database search
routine may have found a matching string. OurTask already provides a
perfect example: when the temperature scale is altered by clicking on an
icon in the window, the values displayed alongside the vertical bar will
need changing. In such cases (as always) the task must not write directly to
the window, since it might be partially, or even wholly, obscured. It must
instead force the Wimp to perform the updating, and there are two ways in
which this may be achieved:

109

Wimp Programming for All

1. Call Wimp_ForceRedraw (SWI &40001), supplying the area to be
updated. This causes the marked area to be registered as invalid. The
Wimp will then in due course set about its renewal - probably by
returning a redraw window request at the next Wimp poll.

2. Call Wimp_UpdateWindow (SWI &400C9), supplying the area to be
updated. In this case, the Wimp immediately initiates the redraw,
returning the co-ordinates of the first rectangle to be redrawn by the
task. The task should comply, and repeatedly call Wimp_GetRectangle
until the Wimp signals that there are no more sections which need
updating.

In other words, calling Wimp_ForceRedraw tells the Wimp "I want to
redraw this part of my window at the earliest possible opportunity; please
issue a redraw request". This means that the window will actually be
redrawn later as part of the normal redraw routine in response to poll
reason code 1. On the other hand, calling Wimp_UpdateWindow is saying
"I am redrawing this window now; please return all the necessary rectangles
for me to complete the job".

Both approaches are similar, but the latter gives immediate results because
the window updating does not have to wait for all other concurrent tasks to
make their next call to Wimp_Poll. The other difference is that in the latter
case, the Wimp does not clear each rectangle before its co-ordinates are
passed to the task for updating. This can be particularly useful when
moving objects across a display using EOR plotting logic, such as when
using rubber banding techniques.

The second method uses more code, however, and is really only worth
considering if you need the background to remain uncleared, so for the
purposes of OurTask we will opt for the first method. In this case, all you
need to do is to make a single call to Wimp_ForceRedraw with the
following data in registers RO-R4:

RO= window handle (-1 means whole screen)
Rl =minimum x co-ordinate of area to redraw
R2 = minimum y co-ordinate of area to redraw
R3 = maximum x co-ordinate of area to redraw
R4 = maximum y co-ordinate of area to redraw

As you may infer from this, the call can be made in one of two ways: you
can set RO to -1, in which case the co-ordinates refer to the screen origin, or
better still you can set RO to the handle of the window to be updated, in

110

----.._

Chapter 7: Redrawing Windows

which case the co-ordinates refer to the work area of the window. Listing
7.2 adopts the latter approach, and all that is needed is to add two lines,
which cause a forced redraw each time one of the three radio icons is
clicked or the appropriate menu item is chosen. Incidentally, it is worth
repeating at this point our recommendation in the first chapter that you
should list the whole program section when adding lines to !Runimage, in
order to understand more fully the purpose and context of the new lines.

Listing 7.2

1540 SYS "Wimp_ForceRedraw",whandle%,360,-460,440,-56
2612 SYS "Wimp_ForceRedraw",whandle%,360,-460,440,-56

Figure 7.5 shows the relationship between the last four parameters supplied
to Wimp_ForceRedraw. There are. two important points to note in
supplying the parameters for this call. Firstly, although the measurements
are made relative to the work area origin, the first of the two vertical
parameters (minimum y) is numerically larger, and it is very easy to reverse
accidentally the order in which they are given. Secondly, because all
measurements are made relative to the work area origin (which is usually at
the top of the work area), both maximum and minimum y will always be
either zero or negative.

work area origin

"'

I

I

I

ymin ymax

l~I Window
'

xmin
'
'

xmax

I

Figure 7.5
The relationship between the work area origin
and the region to be updated in a forced redraw

region to
be updated

visible area

work area

111

Wimp Programming for All

Incidentally, it is worth mentioning at this point that as well as using this
call to redraw the window's contents, you would also use it to alter the
window title (provided that the title has been indirected). For example, you
may have noticed that most applications which edit text or graphics display
an asterisk after the title shown in the title bar when the data has been
modified but not saved. This is standard RISC OS practice, and allows the
user to see at a glance if the data in the window is safe or not. To do this, the
application will create the window with an indirected title string. When the
asterisk needs to be added or removed, the title bar string will be updated in
the buffer and then the task will force a redraw of that part of the window
which covers the title bar.

EFFICIENT REDRAWS
Even in this simple example, you may be able to glimpse some of the
problems involved in updating a window. We have only updated one
simple rectangle, which has the same co-ordinates each time. But imagine a
digital clock displaying hours, minutes and seconds plus the day and date.
This will require updating once every second, but for the most efficient
redraw only those parts which have actually changed should be updated.
This means that the rectangle may include just the seconds display, or the
seconds and minutes, and so on up to the full display if the clock is still
running when midnight comes around. This requires constant recalculation
of the rectangle to ensure that the redraw takes the minimum possible time
to complete on each occasion.

As an even more complex example, imagine that the work area contains
large quantities of editable text. As soon as the user types a single character
at the keyboard, the window must be updated, and if the cursor is
somewhere in the middle of a document the ramifications from a single
keypress can be enormous. All text beyond the cursor may need to be

· rewritten, and this can be a lengthy business, even in machine code. In
many cases (a DTP document for example) the text will be displayed in an
outline font rather than the system font, and this will make matters very
much worse.

To see how fast an application can respond to redraw requests, load a large
text file into Edit, and then move a small window across it. You will see that
redrawing is handled quite efficiently, and the progress of the window
which you are dragging is not noticeably slowed - unless the text in Edit
contains very long lines (or worst of all, no linefeeds at all). In this case,
redraw is impossibly slow.

112

Chapter 7: Redrawing Windows

It takes more than a little thought to ensure that your Wimp task contains
fast and effective redraw routines. The simplest way to achieve great speed
would be to let the Wimp do all the work, and put all your text into icons.
This sort of approach is only suitable for very specific applications
however. It is impractical for large quantities of text, or text that is to be
manipulated to any degree. In such cases you will have to resort to writing
your own fast redraw routine. We will give you some guidelines on the best
ways to do this.

REDRAWING TEXT
The principle involved in creating fast text redraw routines is simple:
redraw only that part of the window which the Wimp nominates. In
practice you can get away with redrawing complete lines of text (of up to 40
or even 80 characters in length), provided that you only redraw those lines
which fall within the nominated area. This makes life a bit easier, since we
only need to worry about they co-ordinates of the redraw rectangle.

Exactly what form the code in your redraw loop will take depends on how
you have stored the text which is to appear in your window. Perhaps the
simplest approach is to store it in some form of array, for example a simple
string array in which each line of the display is held in a separate element.
This is easy to handle, and we will look at this case first, but before doing so
we will mention a more flexible alternative.

If you have a sizeable quantity of text in your work area, and especially if
you are to manipulate it in any way, then long string arrays are out, since
they provide no flexibility at all. The only viable alternative is to store the
text directly in memory, perhaps using character 13 as an end of line
marker, or perhaps without any such markers. In either case, you must hold
an array of pointers to the start of each line. This is essential, because there
is no time to work through the whole file to discover where each line begins
once a redraw request has been received. The redraw process is extremely
time critical, and if it is slowed down in any way the Desktop will become
very sluggish indeed.

By holding an array of pointers you can immediately find the start of the
line of text to be displayed, given the number of the line, counting from the
start of the text file. We will give an example of this technique in due
course, but we will start with the slightly simpler case of text held in a
string array.

113

Wimp Programming for All

REDRAWING TEXT HELD IN AN ARRAY
The best way to see how this is achieved is to look at an example. Listing 7.3
when added to OurTask implements a fast redrawing routine, and one
whose speed is independent of the amount of text held. The procedure
assumes that the text to be redrawn is held in the array display$, and that
there are currently dispsize% valid lines. ·

Listing 7.3

200 whandle%=FNcreate_window{200,200,800,600,400,140
O,&FF000002,"Test window")

240
250
260
370 PROCmakearray

1530
1540
2612
2842 top%={Oy"~-block%!40) DIV 32
2844 IF top%<0 top%=0
2846 base%={47+oy%-block%!32) DIV 32
2848 i%=top%
2850 WHILE i%<dispsize% AND i%<=base%
2852 MOVE ox%,oy%-{i%<<5)
2854 PRINT display${i%)
2856 i%+=1
2858 ENDWHILE
2900 DEF PROCmakearray
2910 DIM display${200):j%=1
2920 a$=STRING${8,''Wimp Test ")
2930 FOR i%=0 TO 200
2940 displ~y${i%)=MID${a$,j%,60)
2950 j%=j% MOD 10+1
2960 NEXT
2970 dispsize%=i%
2980
2990
3000
3010
3020
3030

114

Chapter 7: Redrawing Windows

PROCmakearray (called in line 370 when the program is initialised) sets up a
suitable text array. The response to poll reason code 1 in line 530 is now
diverted to a new procedure, PR0Credraw2, which forms a straighforward
redraw loop, designed to display the block of text indented by 16 OS units
from the left hand side of the window. First of all we obtain the co-ordinates
(in OS units) of the work area origin by subtracting the position of the x and
y scroll bars from the co-ordinates of the top left-hand corner of the visible
area. All this information is returned by the call to Wimp_RedrawWindow,
as we saw in Figure 7.1.

As you can see from the program there are two nested WHILE loops. The
outer one cycles round once for each rectangle which the Wimp requests to
be redrawn, while the inner one prints just those lines which feature in the
nominated rectangle. This is achieved by obtaining values for top% and
base%. These are the upper and lower bounds of the region that the Wimp
has requested to be redrawn, and are measured in OS units relative to the
work area origin. To determine which lines of the array we need to print we
just divide these values by 32 (since each line of text is 32 OS units in height
regardless of which mode is used in the Desktop). At the bottom end
(base%) we add a small measure to counteract the effect of rounding down
(since integer division is used), and that's all there is to it.

The case where the text to be written is held in a block of memory is very
similar. Suppose that the array array% contained a set of pointers to the start
of each line of text in such a way that array%(0) contained the address of the
start of the first line of text, and so on. All we would need to do to alter
PROCredraw appropriately is to replace the PRINT statement in line 2854 by:

2854 PRINT $array%(i%)

This assumes that each line of text is terminated by a carriage return
character in memory.

Incidentally, to see just how slowly the redraw routine operates when the
whole text file is redrawn in response to every redraw request, alter the
assignments of top% and base% in the outer WHILE loop of PROCredraw as
follows:

2842 top%=1
2846 base%=dispsize%

If you now re-run the program you will see that any attempt to drag an
object across the task's window is very slow - and this is only with a very
short text file.

115

Wimp Programming for All

REDRAWING GRAPWCS
When redrawing graphics objects, two different approaches can be adopted.
Either you can use a technique similar to that discussed above for use with
text, where you determine the co-ordinates of the area to be redrawn and
redraw just that area; or you can take a short-cut and use sprites. In
practice, the first of these two methods may not be feasible in all situations.
It may not be possible to draw the r ight-hand part of a graphic without
having drawn the left-hand part first - or at least without having calculated
where the left-hand part would fall. Also there may be no easy way to
know exactly which part of your drawing code to activate to draw a
particular segment of a drawing.

For example, suppose the graphic is a map of the UK, and that it is drawn
from an array of points. There is no ob ious way to get from the bounding
rectangle returned by the Wimp with a redraw request to co-ordinates of
the points required to redraw the nominated area. In such cases, the fastest
redraw will often be obtained by initially creating a sprite covering the
graphic area, drawing the graphic when it needs to be altered by directing
VDU output to the sprite, and then plotting the sprite on the screen when
redraw requests are made. Of course large sprites can take up a great deal
of memory, but this method can be very efJective. For those readers who are
interested in pursuing this, Listing 7.4, when added to OurTask, will create a

116

Figure 7.6
Sprite created by Listing 7.4 and plotted
onto the window during the redraw loop

sprite containing a simple
graphic (see Figure 7.6),
and this will be plotted in
response to the Wimp's
redraw requests.

Before running the
program after the addition
of this listing, you will
probably need to increase
the WimpSlot allocation in
the !Run file from 32K to
64K, as the program
requires quite a bit of
extra memory to store the
sprite. Otherwise you may
find that when you run
the program, you get an
error such as "No room
for this DIM".

Chapter 7: Redrawing Windows

Listing 7.4

30 REM updated to Chapter 7
370 PROCmakesprite

1530 WHEN whandle%:PROCdrawsprite
1540 SYS "Wimp_ForceRedraw",whandle%,100,-500,500,-10

0
2842
2844
2846
2848
2850 SYS "0S_Sprite0p",&122,sparea%,"test",ox%+100,oy

%-500,0
2852
2854
2856
2858
2900 DEF PROCmakesprite
2910 SYS "OS_ReadModevariable",-1,4 TO ,,xeig%
2920 SYS "OS_ReadModeVariable",-1,5 TO ,,yeig°-&
2930 xsize%=400>>xeig%:ysize%=400>>yeig%
2940 DIM sparea% xsize%*ysize%
2950 !sparea%=xsize%*ysize%:sparea%!8=16
2960 SYS "OS_Sprite0p",&109,sparea%
2970 SYS "0S_Sprite0p",&10F,sparea%,"test",0,xsize%,y

size%,MODE
2980 SYS "0S_Sprite0p",&118,sparea%,"test"
2990 PROCdrawsprite
3100 DEF PROCdrawsprite
3110 SYS "OS_Sprite0p",&13C,sparea%,"test",1 TO r0%,r

1%,r2%,r3%
3120 SYS "Wimp_SetColour",1
3130 RECTANGLE FILL 0,0,400
3140 FOR i%=8 TO 1 STEP -1
3150 SYS "Wimp_SetColour",RND(7)+8
3160 CIRCLE FILL 200,200,i%*20
3170 NEXT
3180 SYS "0S_Sprite0p",r0%,r1%,r2%,r3%
3190 ENDPROC
3195

117

Wimp Programming for All

PROCmakesprite is called at line 370 during the initialisation process, and
creates the sprite. For a full description of OS_ReadModeVariable and
OS_SpriteOp, you should refer to the PRM, but briefly what is happening
is as follows: firstly, lines 2910 and 2920 read the pixel-to-co-ordinate ratio
for the current mode. This ensures that the sprite appears to be the same
size whatever screen mode is in use. A sprite area is set up in lines
2940-2960, and a sprite called "test", 400 x 400 OS units large, is created at
line 2970 and selected at line 2980. PROCdrawsprite is then called, which
switches VDU output to the sprite at line 3110, ready for drawing a set of
concentric randomly coloured circles which is done in lines 3140-3170.
Finally, line 3180 restores VDU output to its previous setting.

Lines 1530-1540 of PROCclick have now been altered so that when a mouse
button is clicked over the window, PROCdrawsprite is called again, resulting
in a new set of circles being drawn onto the sprite. Line 1540 forces a
redraw of the area of the window containing the sprite.

When PROCredraw is called from the poll loop, all it now has to do is to plot
the sprite onto the window (line 2850). And that's all there is to it. This is a
very simple example, but you should be able to see how to adapt this for
your own purposes if you want to display complex graphics in a window.

If you find the subject of redrawing windows rather complicated, it is worth
persevering, and experimenting with the program listings, since there are a
great many applications where it is preferable by far to use this method of
displaying information in a window, rather than having to rely on icons to
do all the work.

118

8. The Wimp Message System,
Loading and Saving Data

The message system - Receiving messages - Message action codes - File information
utility - Error-returning SWI calls - Data transfer protocol - Sending messages -
Implementing a save box - Object dragging - Saving data - Submenu warnings

THE MESSAGE SYSTEM
The message system is a very important part of the Wimp, and is the
primary means by which two or more tasks communicate with each other.
This includes communication with the Filer when file icons are dragged to
or from directory viewers, and so all loading and saving of files which is
carried out in this way must be controlled through the message system.
There are many more uses for the message system than this, however, and
the section on the relevant SWI call is one of the longest in the PRM. In the
course of this chapter we will look at all of the most common uses for
Wimp messages, though we would recommend that you read the PRM for a
complete description. As usual, there is a great deal of detail to be mastered
in this chapter, and we make no apologies for repeating our exhortation to
re-read anything which at first appears unclear.

RECEIVING MESSAGES
A task can send a message by using the SWI Wimp_SendMessage
(&400E7). Messages are received in turn through Wimp_Poll, using reason
codes 17-19 (see Figure 3.2 in Chapter 3). We will look in detail at the
reception of messages first, since all tasks should respond to at least one
message from the Wimp, whether they send any themselves or not.

The precise difference between the three reason codes used by the Wimp for
messages will be explained later. For the moment we can safely ignore
reason code 19, and so our poll loop only needs to respond to reason codes
17 & 18. For most tasks these may be bracketed together and passed
through the same routine, as in the following example:

WHEN 17,lS:PROCreceive

119

Wimp Programming for All

MESSAGE ACTION CODES
When a message is sent or received, a parameter block is used to convey all
the necessary information accompanying the message. The format of this is
shown in Figure 8.1. When receiving a message, the first thing a task has to
extract from this block is the action code {block+ 16). This is set up by the
sender and is used to relay the purpose of the message to the recipient, for
example, a mode change or a request to load a data file. The RISC OS 2 PRM
documents 20 or so action codes, and most tasks will only be interested in
these. The RISC OS 3 PRM has information on many more, and some
commercial applications may generate their own action codes, either for
private use or for the benefit of other software which can respond to them.

block+O
4
8

12
16
20

size of block in bytes (max 256)
task handle of message sender
my_ref- the sender's reference for this message
your_ref- a previous message's my_ref, or O if not a reply
message action code
message data - the format of this depends on the
action code at block+ 16

Figure8.1
Wimp message parameter block

As we indicated earlier, every task must respond to at least one type of
message, which is Message_Quit (action code 0). There are usually three
main methods of quitting an application. Firstly, you can choose the task's
Quit menu option (if it has one). Secondly, you can open the Task Manager's r"'\
Tasks window (see Figure 8.2), click Menu over the task name and choose '
Quit from the Task submenu. And thirdly, you can shut down the whole
Desktop by pressing Ctrl-Shift-Fl2. With the first method, the task itself
will decode the instruction to quit and perform the necessary action. In the
second case, the Wimp will send the task a Message_Quit, while in the third
case the Wimp will broadcast the message to all active tasks. If this message
is received, the task must shut down immediately.

If you run OurTask in its present incarnation, then open the Tasks window,
you will see the name OurTask listed in the top section of the window. Click
Menu over the name, move across to the Task submenu and choose the Quit
option. You will see that nothing happens, since we are not responding to
any messages from the Wimp. Now add listing 8.1 to !Runlmage and repeat
the process. This time the task should terminate when you click on the Quit
option, and its name will be removed from the list of active tasks.

120

Chapter 8: The Wimp Message System

FigureB.2
Part of tlu Task Manager's Tasks window

ListingB.1

650 WHEN 17,lS:PROCreceive
3200 DEF PROCreceive
3210 CASE block%!16 OF
3220 WHEN O:quit%=TRUE
3270 ENDCASE
3280 ENDPROC
3290

In this particular case the structure of PROCreceive is very simple. A CASE
statement decodes the message action code from block+ 16, and since we are
only responding at present to action code 0, only one WHEN statement is
required (line 3220).

Figure 8.3 shows some of the more useful action codes and their names, and
we will consider how and why these are used. We said just now that if a
task receives a Message_Quit, it must terminate immediately, i.e. without
delaying or making any further calls to the Wimp. But suppose the task has
unsaved data; if it were to shut down immediately in this way the data
would be lost. So before the Message_Quit is sent, the Wimp sends a
Message_PreQuit (action code 8). The task must acknowledge this message
(by sending a message back, as we shall describe later in the chapter), and is
then free to prompt the user to save data or whatever before terminating.

121

Wimp Programming for All

0
1
2
3
4
8

&400CO
&400C1

Message_ Quit
Message_DataSave
Message_DataSaveAck
Message_Dataload
Message_DataLoadAck
Message_PreQuit
Message_MenuWaming
Message_ModeChange

Figure8.3
Some useful message action codes

Message_MenuWarning (action code &400CO) is sent by the Wimp to a task if
the user moves the pointer across a submenu arrow on a menu tree,
provided that bit 3 of the menu flags is set for that item, as we described in
Chapter 6. The purpose of this is to enable the task to carry out some
processing before the submenu is actually opened; this might involve
updating some information in a dialogue box, for example. We will include
an example of this in OurTask shortly.

Message_ModeChange (action code &400Cl) is broadcast by the Wimp if the
screen mode has been changed by the user, perhaps by choosing a new
mode from the palette menu. Many programs (OurTask included) do not
need to worry about this, but it could be that some applications need to
make an assumption about the number of characters on the screen or some
other mode-dependent variable. If this is the case, then on receipt of this
message they will be able to update any relevant data by reading the state
of the variables for the current mode. !""""'\

Message action codes 1-4 are all part of the data transfer protocol, and as
such form a vital part of the multi-tasking process in the Archimedes. The
ability to transfer files from application to application, and to and from the
Filer by dragging, is one of the factors that make the RISC OS Desktop so
powerful. Later in the chapter we will be looking more closely at the data
transfer protocol, and using it to implement a save box routine for OurTask.
We will also have more to say at that point about the my_rej and your _ref
fields in the message parameter block (refer back to Figure 8.1). For the
moment, however, you can get a brief taste of how part of the protocol
works by adding Listing 8.2. If you now run the updated program and drag
any object to it from a directory display, a beep will sound. The pitch of the
beep will be different depending on whether the object dragged is a file, a
directory or an application.

122

Chapter 8: The Wimp Message System

Listing8.2

370
1520 WHEN -2:IF block%!8=2 PROCibar(block%!8)
1530
1540
3240 WHEN 3:PROCdataload(block%!40)
3300 DEF PROCdataload(type%)
3310 CASE type% OF
3320 WHEN &lOOO:SOUND 1,-10,80,4
3330 WHEN &2000:SOUND 1,-10,120,4
3340 OTHERWISE:SOUND 1,-10,200,4
3350 ENDCASE
3480 ENDPROC
3490

What is happening here is that the Filer is informing our task via
Message_DataLoad (action code 3) that a drag has been performed whose
destination is one of the icons or windows owned by our task. The
information returned with this message is shown in Figure 8.4. If the action
code is 3, PROCdataload is called at line 3240. This reads the filetype from
block+40 (see Figure 8.4); this will be a three-digit hex number for a file,
&1000 for a directory and &2000 for an application. The program generates
a sound which is different for each of these three object types. Incidentally,
you will notice that the effect is the same whether you drag the object to
OurTask's icon bar icon or into its window. This is because we have made no
attempt to read the window or icon handle of the drag's destination point
from the parameter block; all we have concerned ourselves with is the fact
that the drag has ended at a point on the Desktop which in one way or
another belongs to our task.

block+20 destination window handle
24 destination icon handle
28 destination x co-ordinate
32 destination y co-ordinate
36 estimated size of data in bytes
40 filetype
44 full pathname of file, zero-terminated

Figure8.4
Data block returned with Message_DataLoad

(action code 3)

123

Wimp Programming for All

FILE INFORMATION UTILITY
There are a good many practical uses for this facility. Being able to drag
files to an application's icon or window is a vital part of the functionality of
RISC OS. Once the drag has been signalled, the task can do what it likes
with the object which has been dragged, which may involve loading it,
processing it, renaming it or whatever. Sounding a beep, as our task does at
present, is not particularly useful (though it does prove the program is
responding correctly) so we will expand the function of the application a
little by adding Listing 8.3 to the !Runlmage program. When this has been
done, running the application will provide a file information utility.
Dragging any object to the icon bar icon will open a window showing the
object type (file, directory or application), the full pathname of the object,
and the filetype both as a hex value and in its textual form (see Figure 8.5).
If you were unaware that filetypes had a textual description associated with
them, press F12 to get to the command line and then type:

Show File$Type*
You will see a list of system variables of the form File$Type_nnn each
followed by a text string, where nnn represents the hex value of a filetype
and the string is the text label belonging to that type.

Because OurTask now performs a useful practical function, it is worth
studying the whole program carefully to see how all the various elements
of a working Wimp program fit together.

FigureS.5
File infonnation utility produced by Listing 8.3.

The file "MikeLetter" has just been dragged to the icon bar icon

124

Chapter 8: The Wimp Message System

Listing8.3

200 whandle%=FNcreate_window(l00,300,1080,220,0,0,&
84000002,"File info")

210 path$="":type$="":obj$=""
220 desc$="0bject is a"
370
450

1520 WHEN -2:PROCibar(block%18)
2260 WHEN 2:PROCshowmenu(imenu%,!block%-64,184)

Delete 2560-2615

2620 WHEN 1:quit%=TRUE
2845 MOVE ox%+4,oy%-40:PRINT obj$
2850 MOVE ox%+4,oy%-100:PRINT "Filename: "+path$
2855 MOVE ox%+4,oy%-160:PRINT "Filetype: &"+type$

Delete 2900-3195

3320 WHEN &1000:obj$=" directory"
3330 WHEN &2000:obj$="n application"
3340 OTHERWISE:obj$=" file"
3360 path$=FNstring(block%+44)
3370 type$=STR$-type%
3380 SYS "XOS_Readvarval","File$Type_"+type$,block%,

255,0,3 TO ,,len%
3390 block%?len%=13:type$+=" ("""+$block%+""")"
3400 obj$=desc$+obj$
3410 !block%•whandle%
3420 SYS "Wimp_Getwindowstate",,block%
3430 IF block%!32 AND 1<<16 SYS "Wimp_ForceRedraw",w

handle%,0,-220,1080,0
3440 block%!28=-l:SYS "Wimp_Openwindow",,block%
3500 DEF FNstring(ptr%)
3510 LOCAL a$
3520 WHILE ?ptr%<>0
3530 a$+=CHR$(?ptr%):ptr%+=1
3540 ENDWHILE
3550 =a$
3560

20000 DATA OurTask,2,0,info%,Info,&80,-l,Quit
20010

125

Wimp Programming for All

There are some important points that need to be covered in this listing. I"")
Firstly, you may remember that in Chapter 4 we said that many strings
returned by SWI calls were terminated with a zero byte, and that a function
would be described to convert these into strings readable by Basie's string­
handling functions (i.e. they must be terminated by a carriage return). We
now need that function, since as we have seen from Figure 8.4, the
pathname returned in the message block is zero-terminated. FNstring (lines
3500-3550) performs the conversion, taking the address of the zero­
terminated string as a parameter and adding characters onto an output
string one at a time until a zero byte is found. As the output string is a
standard Basic string, it will automatically be terminated by a carriage
return. r')

Lines 3320-3340 in PROCdataload determine whether the object is a file,
directory or application as before, but now all that happens at this point is
that obj$ is set up to contain a string describing one of these types as
appropriate; this will eventually be added to desc$ (defined in line 220) to
form part of the display in the window. Line 3360 sets up path$ to hold the
pathname obtained from the message block via FNstring, while at line 3370
type$ holds a string representing the hex value of the filetype. Line 3380
introduces a SWI call which we have not met so far, OS_ReadVarVal. This
is not a Wimp call, and so you are referred to the PRM for full details, but it
is a very useful call which reads the value of a system variable. In this case
we have used it to read the value of the File$Type variable associated with
the filetype in question.

There is in fact a SWI call provided by RISC OS specifically to convert a
filetype number to its corresponding string and vice versa (SWI
OS_FSControl - see the PRM for details), which you should normally use if r'\
you need to perform this conversion yourself. However, we have used
OS_ReadVarVal here in order to demonstrate that it is a useful SWI call for
other similar purposes that may not have an alternative method provided.

ERROR-RETURNING SWI CALLS
You will have noticed that in line 3380 we have put an "X" before the name
of the SWI. This requires a little explanation since this is a useful feature of
SWI calls that we have not so far met in this book. Normally when a SWI
call is made, the operating system or the module which handles the SWI
will report any errors that occur directly to the user by means of a standard
error box. However, if you precede the SWI name with an "X" as we have
done here, the SWI returns witlwut the error being reported, leaving it up to
the calling task to decide what action to take (the task is notified that an
error has occurred).

126

Chapter 8: The Wimp Message System

It is not always necessary to trap errors in this way, and you can usually
use SWis in their normal form as we have done so far throughout our
listings, since if errors do occur you would normally want to know about
them and it makes little difference whether they are reported by the
operating system or the task. In this particular case, however, the most
likely error generated by OS_ReadVarVal would occur if the system
variable did not exist (as may well be the case for some filetypes). For the
purposes of our program this is not really an error, but since we don't want
to be bothered by an error box if this happens, we have used the X form of
the SWI and simply ignored any error which results.

If we had wanted to deal with the error however, this would have been
quite easy. If you use the X form of a SWI, an error is signalled by setting
the overflow bit on return, and we can read the processor flags by adding a
variable to the end of the SWI call after the last register to be returned,
separated from the others by a semi-colon. The overflow bit is bit 0, so if we
wanted to trap errors our call would look something like this:

SYS "XOS_Readvarval","File$Type_"+type$,block%,255,
0,3 TO ,,len%;flags%

IF flags% AND 1 THEN PROCswi_error

Note that if the call is not returning any registers, you must still include the
TO before the semi-colon. For more information on error-returning SWI
calls, see the PRM.

We have digressed a little here, so let's now return to the program. By the
time we have executed line 3400, obj$, type$ and path$ have been set up to
hold a description of the object type, its pathname and its filetype (including
the textual description) respectively. Wimp_GetWindowState is called in
lines 3410-3420 to ascertain if the window is already open. This is done by
reading bit 16 of the window flags returned by the SWI call. If you look
back at Figure 2.8 in Chapter 2, you will see that bits 16-20 of the window
flags are used to return information about the window in question. For a
full description you should read the section in the PRM covering
Wimp_CreateWindow, but probably the most useful bit is the one we are
using here (bit 16). If this is set, it means that the window is currently open.
If our window is open, we force a redraw in line 3430 to ensure that the
information displayed in the window is updated each time a new object is
dragged to the application.

Once this is done, the new lines in PROCredraw (2845-2855) simply display
in the window the three strings we have set up.

127

Wimp Programming for All

DATA TRANSFER PROTOCOL
So far we have looked at just one element of the data transfer protocol: the
situation where a file is dragged from a directory display to our task. But a
full implementation of the protocol requires up to four stages of
communication between the tasks involved. First of all a task wishing to
transfer data elsewhere must send a message to the intended recipient. The
latter then acknowledges the first message with a second. The sender then
transfers the data and sends a third message, which in turn is acknowledged
by the recipient. Acom has designed this protocol in such a way that it can
be used for virtually all data transfer operations, whether from one
application to another or from an application to the Filer when a file is to be
saved. !'"')

The four messages concerned are action codes 1-4 in that order (see Figure
8.3). To re-cap, these are:

Message_])ataSave
Message_])ataSaveAck
Message_])ataLoad
Message_])ataLoadAck

We will cover the use of the full protocol by implementing a standard RISC
OS save box in OurTask, but first we will describe the process of sending a
message.

SENDING MESSAGES
We have already indicated that messages are sent by using the SWI
Wimp_SendMessage (&400E7). The details of this call are shown in Figure
8.6.

On entry:
RO = reason code (as returned by Wimp_Poll)
R1 =pointer to message block
R2 = task handle of destination task or

window handle (message sent to owner) or
-2 (message sent to owner of icon bar icon whose handle is in R3) or
O (message broadcast to all tasks)

R3 = icon handle (if R2 = -2)

On exit:
R2 =task handle of destination task (except for broadcast messages)

Figure8.6
Details of SWI "Wimp_SendMessage" (&400E7)

128

Chapter 8: The Wimp Message System

r"]., We have already looked at the basic format of the message block in Figure
8.1. When sending a message, you must fill in the length of the block at
block+O, the action code at block+16, any data required from block+20
onwards (dependent on the action code), and if you are acknowledging a
previous message, the sender's reference number at block+12. The Wimp
itself will fill in the task handle of the sender (i.e. yours) at block+4, and will
generate a unique reference number for the message at block+8. The block
is updated before returning from the SWI so you can read this latter value
at that point if you need it for future reference. As we have said, if you are
acknowledging a previous message you must quote the reference number
in your reply; all you need to do therefore when acknowledging is to copy
the word at block+8 into block+ 12. This process is exactly like replying to a
business letter; the sender quotes a my_reJ reference, which you quote in
turn as your _ref.

We have not said anything yet about the reason code in RO, other than that
when receiving a message through Wimp_Poll the code is normally 17, 18
or 19. In fact, other poll reason codes can be used (for example you could
send a task a message with a reason code of 2 to ask it to open a window),
but normally you would have no reason to do so and we will not dwell on it
here.

Reason codes 17 and 18 are similar to one another, being used to send a
message to a destination task with an action code at block+16 as we have
described. The difference between them is that reason code 18 expects the
message to be acknowledged. In practice, provided that you follow the data
transfer protocol correctly, you will know which messages to acknowledge
from their action codes. Similarly, if our task has a need to respond to
Message_PreQuit we know that we must acknowledge the message, and so
for these cases we do not need separate procedures to handle the two reason
codes. You may find, however, that if you are responding to some other
message action codes you might need to differentiate between the two
reason codes.

If your task sends a message with reason code 18, expecting an
acknowledgment, and the recipient does not acknowledge, the Wimp will
return the message to you with a reason code of 19. This is normally used to
detect a situation where you are transferring data to another task but the
task does not acknowledge that the data is received. You would then
generate an error so that the user will know that the transfer has failed. We
will be covering this when we describe the full data transfer protocol later
in this chapter.

129

Wimp Programming for All

IMPLEMENTING A SAVE BOX
The multi-tasking nature of the Wimp
means that there are a number of
situations in which icons may be
dragged from one task to another. The
most common occurrence of this is
associated with the standard save box
used by many applications. To see one
in operation, click Menu over the
Palette icon on the icon bar, and then
move the pointer across the arrow
against the Save entry. This standard
save box contains three icons: a sprite
icon which is draggable, a writable text
icon, and a menu icon with the legend
OK (see Figure 8.7).

Figure8.7
The Palette save box

To save a file (in this case a palette file), you can enter a filename (without a
pathname) into the writable text icon and then drag the sprite icon to the
directory display of your choice. From then on, whenever you open the
save box from the menu, the last used pathname will be displayed in the
writable icon (note that it is the job of the task to set the icon to contain the
pathname - it is not done automatically by RISC OS). Files may now be
saved by clicking on OK (or pressing Return) after optionally editing the
filename supplied in the writable icon, or alternatively by just clicking on
the Save entry in the menu.

To implement such a save box in our program, we have quite a bit of work
to do. Firstly we must design the window for the save box with its three
icons, and give the sprite icon a button type which will make it draggable.
Then we must tie the save box in to a new entry on the icon bar menu. Next
we must detect a drag via poll reason code 6 (mouse click), and respond
using a SWI call to initiate the drag. Finally when the drag is completed (i.e.
when the user releases the mouse button at the drag's destination), we must
start the four-part message dialogue with the owner of the destination
object (which will be the Filer if we are saving the file to a directory
display). As if this were not enough, we must of course remember to save
the data (using either SWI OS_File or Basie's file-handling commands).

Listing 8.4, when added to the existing !Runlmage program, will implement
a save box for OurTask. A Save option now appears on the icon bar menu,
and moving the pointer over the arrow will display the familiar save box.
Initially this will have the default filename "TestFile". You can then

130

Chapter 8: The Wimp Message System

perform the save operation as described for palette files above. We don't
actually have any sensible data to save from our program at this point, so
all that is saved is a text file containing the three strings obj$, path$ and type$
- in other words the details of the last object dragged to the application.

Because Listing 8.4 is quite complex you should be. very careful when
typing it in.

ListingB.4

230 DIM sbspr% 8,sbtext% 255,sbval% 3
240 $sbspr%="file_fff":$sbtext%="TestFile"
250 $sbval%="A- "
370 save%=FNcreate_window(0,0,264,164,0,0,&84000012

,"Save as:"}
380 a%=FNcreate_icon(save%, 100, -92, 68, 68, &6102, "" , ·s

bspr"-6, 1, 9}
390 a%=FNcreate_icon(save%,8,-156,192,48,&700F12D,"

",sbtext%,sbval%,256}
400 a%=FNcreate_icon(save%,208,-156,48,48,&C701903D

,"OK",0,0,0}
610 WHEN 7:PROCstartsave
660 WHEN 19:PROCreport("Transfer failed - receiver

died",1}
1230 block%?38=2
1530 WHEN save%:CASE block%!16 OF
1540 WHEN O:IF block%!8 AND 64 PROCdragbox
1550 WHEN 2:IF block%!8 AND 5 PROCquicksave
1560 ENDCASE
1570 ENDCASE
1720 WHEN key%=13 AND lblock%=save%
1730 PROCquicksave
1735
2260 WHEN 2:PROCshowmenu(imenu%,!block%-64,228}
2610 WHEN l:PROCquicksave
2620 WHEN 2:quit%=TRUE
3230 WHEN 2:PROCdatasave
4000 DEF PROCstartsave
4010 SYS "Wimp_GetPointerinfo",, block°'6
4020 block%!20=block%!12:block%!24=block%!16
4030 block%!28=!block%:block%!32=block%!4
4040 block%!36=LENobj$+LENpath$+LENtype$+23
4050 !block%=64:block%!12=0

131

Wimp Programming for All

4060 block%!16=1:block%!40=&FFF
4070 $(block%+44)=FNgetleaf($sbtext%)
4080 SYS "Wimp_SendMessage",18,block%,block%!20,bloc

k%!24
4090 ENDPROC
4100
4200 DEF PROCquicksave
4210 IF INSTR($sbtext%,".") THEN
4220 PROCsaveit
4230 ELSE
4240 PROCreport("To save, drag the icon to a directo

ry viewer",1)
4250 ENDIF
4260
4270
4300
4310
4320
4330
4340
4350
4360
4370
4380
4400
4410
4420
4430
4440
4450
4500
4510
4520
4530
4540
4550

k%!24
4560
4570
4600
4610
4620

132

ENDPROC

DEF PROCsaveit
file%=0PENOUT($sbtext%)
BPUT#file%,obj$
BPUT#file%,"Filename: "+path$
BPUT#file%,"Filetype: "+type$
CLOSE#file%
OSCLI "SetType "+$sbtext%+" FFF"
ENDPROC

DEF FNgetleaf{a$)
WHILE INSTR(a$,".")
a$=MID$(a$,INSTR(a$,".")+1)
ENDWHILE
=a$+CHR$0

DEF PROCdatasave
$sbtext%=FNstring{block%+44)
PROCsaveit
block%!12=block%!8
block%!16=3:!block%=256
SYS "Wimp_SendMessage",18,block%,block%!20,bloc

ENDPROC

DEF PROCdragbox
!block%=save%
SYS "Wimp_GetwindowState",,block%

Chapter 8: The Wimp Message System

4630 ox%=block%!4-block%!20
4640 oy%=block%!16-block%!24
4650 block%!4=0
4660 SYS "Wimp_GeticonState",,block%
4670 block%!4=5:block%!8=ox%+block%!8
4680 block%!12=oy%+block%!12
4690 block%!16=ox%+block%!16
4700 block%!20=oy%+block%!20
4710 block%!24=0:block%!28=0
4720 block%!32=&7FFFFFFF
4730 block%!36=&7FFFFFFF
4740 SYS 11 Wimp_Drageox 11 ,,block%
4750 ENDPROC
4760

20000 DATA OurTask,3,0,info%,Info,0,save%,Save,&80,-1
,Quit

As you can imagine, there is quite a bit of explaining to do here, but the
actual process is quite straightforward so if you study it carefully you
should be able to see what is going on. Incidentally, can you see why we
have included line 1230? We will explain this at the end of the chapter.

First of all we have created the save box itself at line 370, together with its
icons at lines 380-400. The sprite icon and writable icon are both indirected,
so we have reserved blocks of memory for the sprite name and for the
writable icon's text. The latter is given the default value of "TestFile". We
have also set up a validation string for the writable icon ("A-") because the
space character is not allowed in filenames (refer back to Chapter 5 if you
are unclear about the meaning of this validation string). All this is done at
lines 230-250. Note that we have allowed a buffer length of 256 for the
writable icon because pathnames can be quite lengthy. Acorn recommends
that tasks should be able to handle names of at least 256 characters.

The name of the sprite we have used is file_jff. We mentioned in Chapter 5
that a number of sprites were already available in the Wimp sprite pool,
and this is one of them, being the icon which is used for text files (type
&FFF). In order to access this, we have used an indirected icon with the
middle word of the 12 bytes of icon data set to 1 for the Wimp sprite pool
(see Figure 5.6). The way in which we assert that a particular icon is
draggable is by specifying an appropriate button type in the icon's flags.
We have used a button type of 6 for our draggable sprite icon (see Figure
5.5). This behaves as follows: a click notifies the task, while a drag returns a

133

Wimp Programming for All

button state shifted left by 4 bits. Thus if Wimp_Poll returns a reason code
of 6 (mouse click) with a button pressed value of 1 or 4 it means that the
icon has been clicked with Adjust or Select respectively, but if 16 or 64 is
returned, it means that a drag has been initiated (defined as a button press
with Select or Adjust of more than about one fifth of a second).

Having amended the menu data at line 20000 and also ihe menu selection
routine at lines 2610-2620, in order to add the Save option to the menu, we
now need to detect when a drag has been made from the save box. We can
do this by making some amendments to PROCclick in lines 1530-1550. We
have added a line to our CASE statement to detect clicks over the save box
(line 1530), and this leads to a second CASE statement which examines the
icon. If this is icon 0 (the sprite icon) and the button state is 64 (i.e. a drag
with Select) then PROCdragbox is called (line 1540). If the icon is 2 (the OK
icon) and either Select or Adjust has been clicked (line 1550), PROCquicksave
is called. We will come back to this shortly.

OBJECT DRAGGING
Staying with our drag, PROCdragbox performs the process of actually
putting a drag box on the screen, which can then be moved around with the
pointer in the usual way. When the drag is finished (i.e. the user releases
the mouse button), the Wimp notifies the task using poll reason code 7,
which we will consider in a moment.

The drag is initiated by calling SWI Wimp_DragBox (&40000). The
parameter block required by this call is given in Figure 8.8. Since the co­
ordinates must be given as screen co-ordinates relative to the graphics
origin, we must call Wimp_GetWindowState to discover the position of the
origin of the work area of the parent window relative to the screen origin
(lines 4610-4640) before we can make the call to Wimp_DragBox. We also
make a call to Wimp_GetlconState (lines 4650-4660) to find the co­
ordinates of the icon to be dragged relative to the work area origin
(otherwise we would not know where to start with the drag box). The data
supplied at block+24 to block+36 represent the co-ordinates of the boundary
of the drag, i.e. the total area within which the icon can be dragged around.
This is made as large as possible (lines 4710-4730) since we do not want to
restrict our drag to a particular area. The drag type at block+4 determines the
visual appearance of the drag box. The PRM supplies details of eleven
different types of drag operation, some of which include rubber banding
facilities, but for most purposes drag type 5 will suffice: drag fixed size
"rotating dash" box. This gives the familiar box that you see whenever you
move an icon around.

134

Chapter 8: The Wimp Message System

R1 =pointer to block
or if set to <=0 means cancel drag

block+4
8

12
16
20
24
28
32
36

drag type
minimum x co-ordinate of drag box at start
minimum y co-ordinate of drag box at start
maximum x co-ordinate of drag box at start
maximum y co-ordinate of drag box at start
minimum x co-ordinate of bounding box
minimum y co-ordinate of bounding box
maximum x co-ordinate of bounding box
maximum y co-ordinate of bounding box

Figure8.8
Parameter block for SWI ''Wimp _DragBox"

as applicable to drag type 5

We now have a drag box which will follow the pointer around the screen as
the mouse is moved. At some point the user will release the mouse button,
indicating that this is the intended destination of the drag. When this
happens, the Wimp returns a poll reason code of 7 (user drag box) to our
task, which is picked up at line 610 and activates a call to PROCstartsave. The
block returned with this reason code contains the co-ordinates of the drag
box, but these are of little use to us on their own since we need to know the
window handle so that we can strike up a dialogue with the owner.

PROCstartsave therefore calls
Wimp_GetPointerlnfo (at line
4010) to find out the pointer
position at the end of the drag,
together with the window (and
possibly icon) handle. Details of
this SWI were given in Figure
6.2 in Chapter 6. The function of
the rest of the procedure is to
set up the parameter block for
Message_DataSave, which forms
the first leg of the data transfer
protocol. The message block
required for this action code is
shown in Figure 8.9.

block+O length of block (20-256 bytes)
4 not used on entry
8 not used on entry

12 your_ref (::0 - originating)
16 message action (=1)
20 destination window handle
24 destination icon handle
28 destination x co-ordinate
32 destination y co-ordinate
36 estimated size of data
40 file type of data
44 leafname of data,

zero-terminated

Figure 8.9
Message block for Message_DataSave

135

Wimp Programming for All

As you can see, the window and icon handles together with the co-ordinates
of the destination are extracted from the block returned by
Wimp_GetPointerlnfo and placed in the correct position for
Message_DataSave (lines 4020-4030). Since we are using the same block of
memory for both calls, we need to be a little careful about the order in
which we take data from the first call and move it around in preparation for
making the second. For the estimated size of the file at block+36 (line 4040)
we have simply added together the lengths of the strings which will form
the file, and added 23 bytes to cover linefeeds and also the addition of the
words "Filename:" and "Filetype:" which will be added to path$ and type$
respectively when the file is saved. By referring to Figures 8.9 and 8.6 you
should be able to work out what the remainder of PROCstartsave is doing,
culminating with the actual sending of the message at line 4080.

Provided that the drag has ended at an object owned by a task which can
respond to a drag (e.g. the Filer), the next stage is that our task will receive a
Message_DataAck (action code 2) containing the full pathname for the save
(at block+44). We pick this up by including the appropriate line in
PROCreceive (line 3230), which responds to action code 2 by calling
PROCdatasave. This procedure places the full pathname of the object into the
save box writable icon (line 4510), calls PROCsaveit to save the data, and
sends Message_DataLoad back to the destination task. All we need to do here
is to copy my_rejfrom the previous message into your_ref(line 4530), change
the action code to 3 and the block size to 256 to cater for the maximum
length of name (line 4540), and make the call to Wimp_SendMessage (line
4550). Finally the receiver sends us a Message_DataLoadAck to indicate that
the protocol has been successfully completed.

All we need to do now is to detect whether acknowledgments are received
when we expect them, and this is where our poll reason code 19 comes in. If
a task does not acknowledge a message of ours when it should do so (i.e. a
message sent with reason code 18), the Wimp will return a reason code of
19 to us. Since our task only ever sends messages when it wants to save
data, we know that if we receive reason code 19 it means that something
has gone wrong with the data transfer. Line 660 in the poll loop is therefore
all we need in order to generate an error if this reason code is ever received.

We have now completed the description of the dialogue between our task
and the recipient of the data we wish to save. This will seem complex at
first, but do please study it carefully and re-read any sections which are
unclear at first. Like all other aspects of the Wimp, there is a lot of detail to
be mastered but once this is done it is really quite logical and
straightforward to implement.

136

Chapter 8: The Wimp Message System

SAVING DATA
At some point along the line, we do of course have to save our data. We
have done this immediately after receiving Message_DataSaveAck, by calling
PROCsaveit in line 4520. This procedure simply creates a file using the
pathname supplied with Message_DataSaveAck, and outputs the strings as
we have mentioned earlier, using Basie's own file-handling statements. If
we had just wanted to save a block of memory (as we might if our task was
a text editor, for example), we could have used SWI OS_File instead (see
the PRM for details).

There is one loose end still to be picked up. We said earlier that a click on
the OK icon in the save box would activate PROCquicksave. This provides a
shortcut to saving the data without requiring a drag, but in accordance with
the standard procedure laid down by Acorn, this should only work if there
is a full pathname in the writable icon, just as we saw earlier with the
Palette save box. PROCquicksave therefore scans the filename for a full stop
character. If it finds one, it assumes that the name includes a full pathname
and calls PROCsaveit without any further ado. Note that there is no need at
all for the message dialogue in this case since our task knows exactly where
to save the file and can just use normal filing procedures without any
discussion with the Filer.

If there is no full stop in the string, an error is generated with the message
"To save, drag the icon to a directory viewer". You will probably be familiar
with this message from other applications, and in fact this is the standard
practice recommended by Acorn for such situations.

PROCquicksave is also called if the user clicks on the Save option on the
menu (line 2610) rather than opening the save box. And finally, it is usual
for pressing Return inside the save box's writable icon to have the same
effect as clicking on OK. We have therefore amended PROCkeypress so that
PROCquicksave is called if a key code of 13 is detected within the save box
(lines 1720-1730).

SUBMENU WARNINGS
We have almost finished our look at the Wimp's message system, but there
is one more useful action code to consider - Message_MenuWarning (action
code &400CO). We mentioned earlier that this is generated if the user moves
the pointer over a submenu arrow, provided that the message bit (bit 3) of
the menu flags has been set for the parent item (see the description of
Wimp_CreateMenu in Chapter 6). If the task does not respond to this
message, then the submenu will not appear. The point of the message is to

137

Wimp Programming for All

allow the task to modify or process any data before opening the submenu.
For example, a dialogue box might display the results of calculations which
need to be updated at the time the box is displayed, or a save box might
wish to use an icon for one of several different filetypes depending on the
circumstances under which the box is opened. The message block returned
by Message_MenuWarningis shown in Figure 8.10.

block+20
24
28
32
36

block+n

submenu pointer from menu item
x co-ordinate of top left of new submenu
y co-ordinate of top left of new submenu
item selected from main menu
item selected from first submenu

-1 to terminate list

Figure8.10
Message block returned by
]\.fessage_]\.fenu\.Varning

The pointer at block+20 is the original submenu pointer (or window
handle) contained in the menu definition that would have been used if the
menu flag had not been set. The task may use this same pointer to open the
submenu, or it may substitute it with another. The words at block+32
onwards tell the task which menu item is currently being accessed, and are
interpreted in exactly the same way as the menu selection block returned
with poll reason code 9, and described in Chapter 6. It can be useful to have
this information if there is more than one item which may generate a ~
Message_Menu Warning.

Once you have carried out any actions you need to do before opening the
submenu, you just call SWI Wimp_CreateSubMenu (&400E8). Details of
this call are given in Figure 8.11, and all you need to do is to take the
parameters from block+20 - block+28 (altering the submenu pointer if you
need to), and place them into Rl-R3.

138

R1 =pointer to submenu block
R2 = x co-ordinate of top left of submenu
R3 = y co-ordinate of top left of submenu

Figure8.11
Parameters for SWI "Wimp_CreateSubMenu" (&400E8)

Chapter 8: The Wimp Message System

To demonstrate how this works in practice, we will add a routine to OurTask
which alters the filetype icon in the save box in a random fashion each time
the box is .opened. Add Listing 8.5 to !Runlmage and run the program. Now
when you move the pointer across the submenu arrow on the Save option,
the icon will show any one of four filetypes, and these will appear at
random.

Listing8.5

3250 WHEN &400CO:PROCsubmenu
4800 DEF PROCsubmenu
4810 CASE RND(4) OF
4820 WHEN 1:$sbspr%="file_fff"
4830 WHEN 2:$sbspr%="file_ffb"
4840 WHEN 3:$sbspr%="file_ffd"
4850 WHEN 4:$sbspr%="file_ff9"
4860 ENDCASE
4870 SYS "Wimp_CreateSubMenu",,block%!20,block%!24,b

lock%!28
4880 ENDPROC
4890

20000 DATA ourTask,3,0,info%,Info,8,save%,Save,&80,-1
,Quit

The listing should be quite easy to understand. First of all our menu
definition must be altered so that bit 3 is set for the Save option (by putting a
value of 8 for the menu flags in line 20000). Next a line must be added to
PROCreceive to detect the Message_MenuWaming (line 3250). This calls
PROCsubmenu, which merely sets the sprite name for the sprite icon to one
of four values depending on a random number (lines 4810-4860). These are
all sprites from the Wimp sprite pool, and should be familiar to you as they
are all common filetypes. Finally Wimp_CreateSubMenu is called with the
values which were returned in the message block.

INPUT FOCUS
In our description of Listing 8.4 we asked why we had changed line 1230 in
FNcreate_window. If you refer back to Figure 2.3 you will see that the value
at block+38 sets the title bar background colour when the window has the
input focus. If you adhere to Acorn's guidelines, this will normally be cream
(colour 12). However, the guidelines also state that dialogue boxes should

139

Wimp Programming for All

not be highlighted but should remain grey (colour 2). Our save box falls into
this category, and therefore we have altered FNcreate_window since none of
our other windows require the input focus. Normally, however, you would
need to add an additional parameter to the function so that you can
differentiate between windows which require to be highlighted and those
which do not.

Once again, this has been a complex chapter with a great deal of detail to be
grasped. If you have managed to stay with us so far you should by now
have a good understanding of the Wimp and are probably capable of
writing your own multi-tasking programs. If you are still floundering, don't
lose heart - go back to the point at which you started to become lost and
study the text and the listings carefully. There is light at the end of the
tunnel, and the best way to get there is to look carefully at each procedure
in the listings, and wherever possible experiment with them - "hands on"
experience is far more valuable in understanding Wimp programming than
endlessly ploughing your way through pages of theory. This is not to say
that the theory is unimportant, but you are more likely to see the logic
behind it if you try to relate it to practical ideas.

If light relief is possible with such a weighty subject as the Wimp, the next
chapter will provide it, as we shall be abandoning theory and describing a
tool which will make the job of designing windows very much easier.

140

9. Templates
What is a template? - Using FormEd - Creating a window-Adding some icons - Sprite­
only icons - Text-plus-sprite icons - Using templates in an application - Using sprites
from more than one area

WHAT IS A TEMPLATE?
So far in our test application we have defined all our windows within the
program itself, by making use of the function FNcreate_window which was
described in Chapter 2. However, there is a more effective way of creating
windows, and that is to use templates. A template is a complete window
definition (including icons) which can be stored in a file and loaded into a
program when required. Three Wimp SWI calls have been provided to
enable you to use template files, and what is more, Acom has provided an
application, FormEd, to assist you in designing your windows. This takes all
the guesswork out of the job and will also create your template file for you
when the design is completed. With FormEd, you design all your windows
on screen, and you can see exactly how they look, complete with all their
icons, while you edit the design at will until it meets your requirements.
Most commercial applications use this method, and if you look inside
almost any application directory (e.g. that for Maestro) you will find a file
called Templates (Figure 9.1). This file will contain one or more templates
which define the windows used by the application.

FormEd is widely available, and
can be supplied by most Acorn
dealers for a modest sum. It is also
included on the RISC User Wimp
Programmer's Toolkit (details of
which are given in Appendix F).

Because templates are used to
create windows and icons, you
will probably find it helpful to
refer back regularly to Chapters 2
and 5, where these elements of the
Wimp were fully described.

Figure 9.1
Maestro's application directory showing

the Templates file

141

Wimp Programming for All

USING FonnEd
FormEd is supplied with a Help file which constitutes a very brief manual
for the product, and it may be worth taking a look at this file before using
the program.

You start FormEd just like any other application, by double-clicking on its
icon in a directory viewer, or by double-clicking on a template file (but note
that if you double-dick on a template file once FormEd is installed, a second
copy of the application will be installed to handle the second file). Before
you start to create any windows of your own, it is well worth having a look
at some templates from other applications, for example Edit. In RISC
OS 2, open up the application directory and double-click on the Templates
file. In RISC OS 3, choose Open '$' from the Resources icon bar menu,
double-click on the Resources directory, then the Edit directory, and finally on
the file Templates. What happens now will depend on which version of
FormEd you have. Earlier versions (prior to 1.24) display all the windows
defined in the file on the screen at the same time (see Figure 9.2), while
versions 1.24 onwards show a list of templates in a window (Figure 9.3),
each of which can then be displayed by double-clicking. You could try
editing some of Edit's windows by way of experiment, but be careful not to
save back the results and thus overwrite the original.

Figure 9.2
Edit's templates displayed on the screen

142

Chapter 9: Templates

Figure 9.3
The later version of FormEd opens a window listing the templates

CREATING A WINDOW
To illustrate the use of FormEd, we will go back to the OurTask program in
the state it was in after adding Listing 7.1 in Chapter 7. If you remember,
the program at that point displayed a set of radio icons from which to
choose a temperature scale, and a coloured bar showing values for boiling
point, freezing point and absolute zero for the selected scale (see Figure 7.3).
Using FormEd, we will design the main window on screen and load it in as
a template file instead of creating it as part of the program listing. To avoid
confusion between this program and OurTask in its later updated form,
make a copy of the !OurTask application as it stood at Listing 7.1, and call
this copy !PlateTest. This is the application that we will now be working on
in this chapter.

First of all, install FormEd on the icon bar and click on its icon. If you are
using the earlier version of FormEd, this action itself will create ·a new
window, and will display it on the screen ready for editing.

The later version opens a window of its own within which it will display a
list of all the windows you create; to create a new one jw;t click Menu over
the FormEd window and move across New window. A writable icon will
appear into which you should type the identifier. This is the name you
choose for the window (maximum 11 characters), and will be used to
identify that particular window in the template file when your application
needs to load it. For our application, we will use the name Main. Once this
is done, an icon bearing the identifier will appear in the FormEd window,
and this can be opened for editing by double-clicking on it.

143

Wimp Programming for All

Drag out the new window to the approximate size that it will be when the
design is finished. Note that this is the initial visible area that you are
determining - the work area extent will be set later. It is a good idea to allow
a little extra for the visible area at this stage - you can always alter the
window again later to make it just the size you want. Now click Menu over
the window. The menu which appears is divided into two parts, the upper
part dealing with icons - most of which is initially greyed out (since we
have not yet created any icons) - and the lower part with the window itself.
Move the pointer across the Windaw flags entry, and if the New format option
is not already ticked, click on it to tick it. If you refer back to Figure 2.8 in
Chapter 2, you will see that certain window flags were marked as "Unused"
because they only applied to an earlier version of the window manager. The _......
New format option simply ensures that these bits are not used by mistake
when creating a RISC OS application.

Now take a look at the various options below the dotted line in the Windaw
flags submenu. These all relate to parts of the window (scroll bars, Close
icon etc.), and initially all will be ticked, but you can unset any of these by
choosing the corresponding menu option. The results will be shown
immediately in the window. Thus if you untick H scroll your window will
lose its horizontal scroll bar, and so on. Our window does not need scroll
bars or an Adjust size icon, so these can be unticked, but it is better to do
this later, since if you remove the scroll bars too early you would need to
replace them again if you want to alter the window size within FormEd
while you are editing your design.

Next move the pointer across the Title icon entry in the Window flags
submenu to display the Title flags submenu for the window. Then move
across the Text entry, and type in the required text for the title bar. If you
type in more than 12 characters, FormEd will automatically make it
indirected, ticking the Indirected entry on the submenu and setting the length
of the buffer accordingly (actually to 1 character more than the current
length of the title text, to allow for a terminator at the end of the string).
You can alter the length of the buffer yourself if you need to by moving
across the Indirected entry and typing a value into the writable icon. You
may need to do this if, for example, you expect the contents of the window
title to change while the program is running; you would then make the
length of the buffer equal to the maximum expected length of the title.

To make things relatively simple we will not use an indirected title string,
so you should type Temperature into the writable icon. This will now be
displayed in the window title bar.

144

Chapter 9: Templates

Turning our attention to entries above the dotted line on the Windaw flags
submenu, we can alter the flags which determine a number of further
options. If you refer back to Chapter 2 again, you will see that each of these
items on the submenu relates to one of the window flags. For example, the
Moveable option determines whether bit 1 (window can be dragged) is set,
while No bounds relates to bit 6 (window can extend outside screen area). Bit
4 (Wimp needs no help to redraw) is handled by the Auto-redraw option; if
you untick this item, the window will become cross-hatched. This is merely
a reminder that you have turned off the auto-redraw flag for this window,
and that you will therefore need a redraw routine in the Wimp application
which will use the template. The cross-hatching will not appear when the
window is opened in your program. In listing 7.1, we created our window
with this bit unset since we wished to redraw parts of the window
ourselves, but this time we are going to do it all using icons, so you can
leave this option ticked. You should also ensure the Moveable option is
ticked; all the others can remain unset.

If you were to untick the Moveable option it would mean of course that your
window would not be movable when it manifests itself in your application.
But it also makes it unmovable from within FormEd. This is because
FormEd treats the windows and icons which you are creating in just the
same way as any other Wimp task. The window you are editing will even
respond to a click on the Close icon - but if you are using the earlier version
of FormEd, beware, as this will delete it completely. The fact that FormEd
treats all windows and icons you are editing as normal windows and icons
can initially be a source of confusion, but it soon becomes clear as you use
the application.

You will notice that the Window flags submenu has a Work area entry, in
addition to the Work area item on the main Window menu. In fact the item on
the submenu is to allow you to set the button type for the window's work
area (bits 12-15 of the work area flags - see Figure 2.10). If you move across
the entry to the Button type submenu, you will see that the items on that
submenu correspond to the button types shown in Figure 2.10. For the
purpose of our window, we can leave Click ticked.

Going back to the top level Window menu, the Colours entry, as you might
expect, allows you to set the colours for the various parts of the window, as
described in detail in Chapter 2. If you have not already experimented with
window colours when running the program listings in that chapter, you
will find it easy to play around with the colours in FormEd using this
submenu. However, as we have stressed before, you should always follow
Acorn's guidelines with regard to window colours. FormEd's default

145

Wimp Programming for All

colours are set up to conform to this standard, and you should not change
them when writing your own applications unless you have a very good
reason to do so. Thus you will find that the title bar and work area
foreground colours will be colour 7 (black), the title bar background colour
2, the work area background and the scroll bar inner area colour 1, and the
scroll bar outer area colour 3. The entry entitled Input focus determines the
title bar background colour when the window has the input focus, i.e. when
the caret is in the window.

Moving across the Work area entry on the top level menu enables you to
alter the work area extent of the window. This brings up a dialogue box
which contains a number of arrow icons which may be clicked on to alter
the work area extent. In all cases, you cannot make this less than the visible
work area currently displayed by the window. Once you have set up
suitable values, click on OK. The work area extent really only needs to be
set if you are creating a window whose visible area may not always cover
the whole window, and which therefore has scroll bars. Many simple

-11h-ff'fHt
Click
blHH
DoUlt ~licl:
Clict/Dnt
ltlusellr•t
Doublt1Dr11
lttn11icon
Doulllol(licl1Jr11
bii•
12
13
.. ihlClici:IJrit,
lrih .. lt

Using FormEd to design a window
template

applications will display all their
information in one fixed-size
window without scroll bars, and
in these cases the setting of the
work area extent is irrelevant.
The window we are creating for
PlateTest falls into this category,
and so you do not need to worry
about the settings in the Work
area extent dialogue box.

Finally, if you are using the early
version of FormEd you need to
give your window an identifier,
since this will not have been
done otherwise. Move the
pointer across the Identifier entry
in the top level menu, type in a

suitable name (Main in our example), and note it down (since you will need
to specify the name when you load the template from your program). If you
are creating more than one window, you need to take special care to give
them all an identifier, because FormEd will only remind you if none of your
windows has one, and when you come to save your templates it will only
save those with identifiers. This will only be a problem with the earlier
FormEd, since with the later version you cannot create a window without
specifying an identifier first.

146

Chapter 9: Templates

ADDING SOME ICONS
Creating icons in FormEd is easy. Just choose the Create icon option from the
Windaw menu, and an icon will be put into the window. Initially it will be a
simple text icon in black on cream, bearing the legend <Untitled>, but with
FormEd it is easy to alter any or all of the parameters which determine the
icon's appearance. You will find that the icon is draggable. If you use the
Select button you can drag the icon to anywhere within the parent window
to reposition it. If you use Adjust on the other hand you will be able to drag
its edges so as to resize it.

For our first icon we will create a simple text icon - the one at the bottom of
the window which reads "Temperature scale". First of all drag the icon
down towards the bottom of the visible area of the window. Now click
Menu over the icon, and move the pointer across the Amend icon entry. This
brings up a menu of icon flags, and these can be selected or deselected as
required, in just the same way as the window flags. If you refer back to
Figure 5.4, you will see that once again the menu entries correspond to the
flags, apart from bits 21-23 which FormEd does not cater for (these bits
would normally be set or unset by the application according to
circumstances, and so it is not necessary to define them at the outset).

Since this will be a text icon, ensure that Text is ticked and that Sprite is
unticked. Now move across the Text entry, type in Temperature scale and
press Return. This is more than 12 characters in length, and so FormEd will
automatically make it indirected in just the same way as for the window
title text. It will also enlarge the icon if the text will not fit the original size.

You can now alter the other flags as required. In this case, we do not want a
border, nor do we want the icon filled, so we will untick both the Border and
Filled items. We will also want to alter the button type of the icon. By
default this will be Click/drag (button type 6). We do not want to respond to
clicks or drags on this particular icon, so we will need to choose the Never
option (button type 0), but if you make this selection you will not be able to
move or resize the icon from within FormEd. It is usually best to leave the
button type as Click/drag until you have finished editing, and then alter it to
your chosen type.

One important point to note down on paper about your icon is its number.
This is supplied in the second entry of the top level menu. It will read
Amend icon #0 for the first icon, Amend icon #1 for the second, and so on. You
need to know this number, because this is the icon handle by which you
will identify that icon in any dialogue with the Wimp. You can renumber

147

Wimp Programming for All

any icon at any time using the Renumber option from the menu and entering I'")
the new number in the writable icon provided. If you supply a new number
that already belongs to an existing icon, FormEd will swap the numbers of
the two icons - very handy providing you know what is going on.

The Copy icon, Move icon and Delete icon entries on the top level menu need
little explanation, except to add that Move icon moves the icon by a pixel at a
time in the required direction. This is handy for making small adjustments
to an icon's position, especially if you have already altered the button type
to something other than Click/drag. The later version of FormEd also allows
you to position an icon at specific co-ordinates within a window.

SPRITE-ONLY ICONS
In order to illustrate the creation of a sprite-only icon, we will use this
method for our coloured bar on the right of the window. First of all you
must create a sprite. Load up Paint, open a sprite file window, and create a
mode 12 sprite called l3ar, 100 pixels high by 10 pixels wide. Now fill the top
half of this rectangle with red and the bottom half with blue. Save the sprite
file inside the !PlateTest directory as Sprites.

Now return to FormEd and create a new icon. Make sure that the Text
option is unticked, but for the moment leave the Indirected option unticked.
Then tick Sprite, and move the pointer across this option to type in the sprite
name l3ar. Sprites in the Wimp pool are loaded into FormEd automatically
at start-up from a sprite file called Default within FormEd's application
directory; if our icon were to contain one of these, the sprite would
automatically appear in the icon. However, we are using our own sprite so
we must notify FormEd about it. We can do this by dragging the sprite file I""""'\
to FormEd. If it is dragged to the icon bar icon, any sprites in the file will J
now replace the default set. If on the other hand it is dragged into the
window you are editing, the sprite file will be merged with the default set.

If you are using both Wimp pool sprites and user sprites in the same
program, you will therefore need to drag your sprite file to the window to
merge the sprites, since otherwise you will only see one set displayed on the
screen. PlateTest will be using sprites from both areas, so you must follow
this procedure if you want all the sprites to be visible in FormEd.

Assuming that the sprite is now displayed correctly, you will find that you
need to re-size the icon so that it is the same size and shape as the sprite.
Having done this you can then position it at the correct place in the
window, remove the border, and set the button type to Never.

148

Chapter 9: Templates

TEXT-PLUS-SPRITE ICONS
When we described icons in Chapter 5, we considered text-plus-sprite icons,
and we created a set of radio icons of this type. It is quite easy to do this in
FormEd, and we will demonstrate by creating the same three icons for use
in PlateTest. To avoid a lot of unnecessary editing, it is easiest to create one
icon first, set all the parameters and then copy it twice, altering the text of
the other two icons afterwards.

First of all, then, we must create an icon, then tick both the Text and Sprite
entries. The text should be typed into the writable icon relating to the Text
entry as before (in our case the first icon is labelled Fahrenheit, so this is
what we should type in). As we saw in Chapter 5, the icon must be
indirected and the sprite name must be included in a validation string,
preceded by an S command. In fact, it is possible to have non-indirected
text-plus-sprite icons, but they are of little practical value since both the text
and the sprite name must be the same (because there is only one
12-character block for this purpose in the icon definition). So wherever you
use text-plus-sprite icons you would normally make them indirected.

As far as FormEd is concerned, then, you should leave the writable icon
which forms the Sprite name submenu blank, move the pointer across the
Indirected entry and then across Valid, and type in Sradiooff,radioon. If you are
unclear about the meaning of this validation string, refer back to the
description of Listing 5.5 in Chapter 5.

Provided that you have dragged your sprite file into the window in order to
ensure that the default set of sprites is not overwritten, you should now see
the radiooff sprite displayed in your icon, but it will most likely appear in the
centre of the icon, overwritten by the text. However, as we described in
Chapter 5, it is possible to specify the relative positions of the two elements
in a text-plus-sprite icon, using a combination of the horizontal, vertical and
right-justified bits. In the case of radio icons, you should tick the V centred
option and untick both the H centred and R justified options. This will
position the sprite to the left, with the text just to the right of it.

The text and sprite should now be displayed in the correct places, but there
is still a little work to be done. For a start, the text will probably overrun the
icon border at the right-hand side, so you will need to drag out the icon's
size with Adjust to contain it. Now you must remove the border, set the
background colour to the same as the window background colour
(normally 1), set the button type to Radio, and finally give the icon a non­
zero ESG number. Having done all this, you can now copy the icon twice.
The new icons will still be labelled Fahrenheit but you can alter the text to

149

Wimp Programming for All

Celsius and Kelvin in tum. All the icons are as yet unselected, but clicking on
any one of them will select that icon and switch its sprite to radioon.
Provided that the ESG numbers are the same for the whole group, the icons
will now behave in the correct way: clicking on any of them will select it
and deselect the others. You should note when using FormEd that
whichever icon is selected in the window at the time the template file is
saved, will also be selected when the template is loaded and the window
created in your program.

Two things now remain to be done before we can use the template in our
program. Firstly we must create icons which will display the figures for
boiling point, freezing point and absolute zero. These will be text-only
icons, indirected so that we can update them whenever the temperature
scale is changed. You should find it quite simple to create these in FormEd -
the Text, V centred and Indirected options should be ticked, and the button
type should be Never. Assuming that you have selected the Fahrenheit icon in
the radio group, the initial values to be typed into the Text writable icons
will be 212, 32 and -523 respectively.

Finally, we must return to our sprite-only icon (the coloured bar). You will
remember that we left the Indirected option unlicked, but in fact the icon
must be indirected, otherwise we cannot display the sprite in our program
(since only an indirected sprite icon has provision for a sprite area pointer).
The reason we left it unticked is that FormEd cannot display sprites in
indirected sprite-only icons. This is merely a limitation of the way in which
FormEd works, and does not affect our own program in any way. You must
therefore now set the indirected bit for this icon. The sprite will disappear
from the window you are editing, but provided that you have correctly
sized the icon, this will not matter at this stage.

And that's all there is to it. Now you can move the window to the position
on screen where you wish it to appear when it is first opened in your
program, adjust the size as required, and remove the scroll bars and the
Toggle size icon. Now save the template. With the earlier version of
FormEd, you choose the Save templates option from the icon bar menu, and
drag the template icon to an application directory, using the default name
Templates. The later version has a similar option on the main window menu.
This will save all the windows present in the editor (in the case of PlateTest
just the one), together with all their icons. The Quit option can now be used
to exit FormEd - but note that with the earlier version this option kills its
task without any warning, even if you haven't saved the last two hours'
work!

150

Chapter 9: Templates

This may all sound a very long-winded way of designing windows and
icons, but in fact it is much quicker and easier than doing it by trial and
error. Once you have used FormEd a couple of times you will marvel at the
way you can fine-tune your design knowing that every alteration you make
will be reflected immediately on the screen as you edit.

USING TEMPLATES IN AN APPLICATION
Having created a window template for use by PlateTest, we can now
introduce the program listing. As we said earlier, it is assumed that you
kept a copy of the !Runlmage program from OurTask after Listing 7.1 had
been added, and Listing 9.1 should be added to this.

There is one possible problem before we can run the program, however. In
its earlier incarnation the three radio icons were created first and therefore
were given icon handles of 0-2 by the Wimp. But if you have followed the
order described in this chapter, they will probably have icon handles of 2-4.
You will therefore need to make one further change to the window in
FormEd, and renumber these icons as 0-2. At the same time, make sure that
the three text icons which hold the temperature values have numbers of 5-7,
and the coloured bar is icon number 3.

Listing9.1

160 DIM block% 500,imenu% 99,smenu% 99,limits%(2,2)
165 DIM mainind% 150,name% 11
200 file%=0PENIN"<Obey$Dir>.Sprites"
205 size%=EXT#file%+4:CLOSE#file%
210 DIM sparea% size%
215 !sparea%=size%:sparea%!8=16
220 SYS "OS_SpriteOp",&10A,sparea%,"<Obey$Dir>.Sprit

es"
230 SYS "Wimp_OpenTemplate",,"<0bey$Dir>.Templates"
235 $name%="Main"
240 SYS "Wimp_LoadTemplate",,block%,mainind%,mainind

%+150,-1,name%,0
245 block%!64=l:block"~!208=sparea%
250 block%!112=l:block"~!144=1:block%!176=1
255 SYS "Wimp_CreateWindow",,block% TO whandle%
260 SYS "Wimp_CloseTemplate"
530

1530 WHEN whandle%:IF block%!8<>2 THEN
1540 iconse1%=block%!16:PROCupdate

151

Wimp Programming for All

1550 ENDIF
1560 ENDCASE
2612 PROCupdate
2800 DEF PROCupdate
2810 !block%=whandle%:FOR i%=5 TO 7
2820 block%!4=i%:SYS 11Wimp_Geticonstate 11 ,,block%
2830 $(block%!28)=STR$1imits%(iconsel%,7-i%)
2840 block%!8=0:block%!12=0
2850 SYS "Wimp_seticonstate",,block%
2860 NEXT
2870 ENDPROC
2880

Delete 2890-3080

Lines 200-220 set up a sprite area and load our Sprites · file into it (see
Appendix C for more details on sprite areas, and Appendix B for an
explanation of Obey$Dir). Next we must load the window template and
create the window (lines 230-260). Three SWI calls are required to handle
templates. The first of these is Wimp_OpenTemplate (&40009), which
takes just one parameter: the full pathname of the template file in Rl. This
opens the file ready for the templates to be loaded into the program. Having
done this, you must then call Wimp_LoadTemplate (&400DB), followed
immediately by a call to Wimp_CreateWindow, for each window that you
wish to load and create. The parameter block for Wimp_LoadTemplate is
shown in Figure 9 .4.

152

On entry:
R1 =pointer to user buffer for template
R2 = pointer to workspace for indirected data
R3 = pointer to end of indirected workspace
R4 = 256-byte font reference array (-1 for no fonts)
R5 =pointer to template identifier (must be 12 bytes word-aligned)
R6 = position to search from (O for first call)

On exit:
R2 =pointer to remaining indirected workspace
R6 = position of next entry (0 if no match found)

Figure 9.4
Parameter block for SWI "Wimp_LoadTemplate" (&400DB)

Chapter 9: Templates

Once this has all been done, the file is closed again using
Wimp_CloseTemplate (&400DA). This latter call requires no parameters
since an application can only have one template file open at any one time.

The parameter block in Figure 9.4 requires a little explanation. The buffer
pointed to in Rl will hold the complete window definition as it is loaded in
from the template file. This will have exactly the same format as a standard
window definition block as shown in Figure 2.3 in Chapter 2. Note that it
will contain all the icon definitions in the window as well (from block+88
onwards in the window definition) - when using templates we do not need
to create the icons separately with Wimp_Createlcon. Programs usually
use the same parameter block for this buffer as for most of the other SWI
calls - i.e. block% in PlateTest. It must be big enough for the largest window to
be loaded, however, and we will show you how to calculate its size in a
moment.

R2 holds a pointer to a block of memory which the Wimp will use to store
any indirected data associated with the window, either for icons or for the
title bar. Whereas the buffer in Rl is a transient store for each window
definition between loading in the template and creating the window, the
buffer in R2 is a permanent store for all the indirected data from every
window thus created. The Wimp will allocate space in this buffer for each
indirected icon in tum, according to the length required, and will create the
icon with its indirection pointer pointing to the correct address. Because the
task itself does not know the exact address of each individual icon's text (as
it would if the icon were created within the program), you would normally
use Wimp_GetlconState to find it out when necessary, as described in
Chapters.

If you are loading more than one window template, you can either use a
single block of indirected workspace for them all, in which case it must be
large enough to hold all the indirected data from every window created
from templates, or you can reserve a separate block for each window. The
latter method is probably easier. In our program we are only loading one
template, and we have called the pointer to the block mainind%, so if you
wish to experiment by adding a template of your own for the program's
other window (the info box), you could reserve a second block at, say,
infoind%.

~ The end of the indirected workspace (i.e. the highest address available plus
1) is passed in R3. If this is not large enough to hold all the data, a "Window
definition will not fit" error is generated when the program is run.

153

Wimp Programming for All

The name passed to Wimp_LoadTemplate in RS is a pointer to a further
buffer containing the identifier you gave the window when it was created in
FormEd. Note that this buffer must be 12 bytes long, so it is no good just
passing the identifier itself as a string at RS as you can usually do with SWI
calls, or odd things may happen when you load the template.

On exit from the call, the block whose address was supplied in Rl . now
holds the complete window definition for use by Wimp_CreateWindow,
while R2 now points to the start of the remaining indirected workspace. In
other words, if the first call to Wimp_LoadTemplate results in 20 bytes of
indirected data being put into the workspace (including terminators), on
exit R2 will point to an address 20 bytes higher than on entry. If you are
using one block of memory for all your indirected data, this new address
can then be passed in R2 when the next call to Wimp_LoadTemplate is
made, and so on until all the templates have been loaded.

Before we can use this SWI call with confidence, we need to ensure that the
block pointed to in Rl is large enough. If it is not, the data from the
template file will overwrite some other part of memory and most likely
cause the program to crash when it is run. No error would be generated at
the time of loading the template, since the Wimp cannot know how much
memory you have reserved for the block. Failing to make a block large
enough for templates is a common cause of problems when developing
programs, and can take a lot of time to track down since the problem may
not manifest itself immediately.

The window definition block (in our case bl.ock%) is used for each window
in turn, so it only needs to be big enough for the largest definition in the
template file. This is calculated by taking the 88 bytes needed for the
window definition itself and adding 32 bytes for each icon defined in the
window. This is not quite the end of the story, though, since the Wimp also
uses the block as a temporary store for indirected data before transferring it
to the indirected workspace. So the block size must be:

88 + 32*number of icons + size of all indirected data in window

Remember to include a terminator for each string as well as the actual text
itself, and also to include the window title bar if this is indirected. If you
have designed your window roughly in accordance with the steps outlined
in this chapter, a block of 500 bytes should be sufficient for the window
definition, and one of 150 for the indirected workspace. These are the values
we have used in lines 160 (block%) and 165 (mainind%) respectively. We ""'""'\
have also dimensioned a small additional buffer, name%, to hold the
identifier name.

154

Chapter 9: Templates

USING SPRITES FROM MORE THAN ONE AREA
In our window we have used sprites both from the Wimp pool and our own
sprite file. In order to do this we must follow certain rules. The window
definition block contains a pointer to a global sprite area for the whole
window (at block+64), and the Wimp will normally use this pointer when
displaying sprites in any icons in that window. However, we have seen that
indirected sprite-only icons can have a pointer of their own (see Figure 5.6)
which, if present, will override the global pointer. We have made use of this
facility in PlateTest in order to use sprites from two separate areas.

In line 245 we have set the global pointer to 1 (for the Wimp pool), and the
r--. pointer for icon number 3 (the coloured bar) to sparea%. The formula for

setting the sprite area pointer for any given icon is as follows:
block%!(88+icon%*32+24)=sparea%

where icon% is the icon number and sparea% is the start of the sprite area.
This line must of course be repeated for any other icons which are to use the
same sprite area. Sharp-eyed readers may have noticed that we have
addressed the word at byte 24 of the icon block, whereas Figure 5.6 shows
the sprite pointer at byte 28. This is because the data in the icon block as
supplied to Wimp_Createlcon is displaced by 4 bytes to make space for the
window handle; when we are using templates, the icons are created along
with the window and each icon block is just 32 bytes long, since we no
longer need to specify the window handle. ·

In fact, if you are using a few Wimp pool sprites together with some sprites
of your own, as we have done here, you may find it preferable to put all the
sprites into your Sprites file (including duplicates of any Wimp pool sprites).
This file can then be loaded into the user sprite area at sparea%, the global
pointer at block+64 can be set to this area, and you can mix text-plus-sprite
and sprite-only icons, indirected and non-indirected, quite freely without
any problems.

If the template file holds further window definitions, these can be loaded
and created in turn by repeating lines 240-250 for each window. Once you
are satisfied that the program is working correctly as listed here, you might
like to try designing a template for the info box and amending the program
to load it in, instead of creating it directly as we are doing at present.

As for the rest of the program, the only alteration necessary to enable it to
run with templates is to include the new procedure PROCupdate. Originally,
the display of the temperature values was handled by our redraw loop, but
now we are using icons instead. This means that each time one of the radio

155

Wimp Programming for All

icons is clicked, or the temperature scale is altered from the menu, we must
reset the temperature values by using Wimp_SetlconState. PROCupdate
(lines 2800-2870) is quite straightforward and you should have no difficulty
working out exactly what it does.

As you get used to developing your own applications, you will find that
FormEd becomes an indispensable tool. In order to explore its versatility,
we suggest that you might like to try substituting templates for some of the
window definitions we created in other listings in this book, and amending
the programs to load them instead of using the original window and icon
creation routines. You will probably find it helpful to have Chapters 2 & 5
of this book to hand as you experiment, in order to refresh your memory on
the details of the theory as you go. With a little practice you could soon be
designing windows as smart and attractive as those used by many
commercial applications.

156

10. Printer Drivers and Outline Fonts

Printer drivers - Internal co-ordinates - The print job - Drawing the page - Colour
translation - Outline fonts - Displaying outline fonts - Printing outline fonts - Epilogue

We are now approaching the end of our tour of the Wimp's complexities. In
this final chapter, we will consider how to get a multi-tasking application to
send its output to a printer. We will also take a brief look at the use of
outline fonts for both screen and printer output, since the use of these fonts
can greatly enhance the attractiveness and versatility of your textual
displays.

PRINTER DRIVERS
By using a system of standardised RISC OS printer drivers, Acom has made
the provision of hardcopy a relatively painless affair for programmers.
Without these drivers, each application would need to incorporate separate
driver routines for each of the printer types with which the software might
be used. Instead a uniform interface is provided with which to
communicate - one which we might call a "virtual printer". This means that
any application which uses the RISC OS drivers for printing will work with
any new printer that might appear, provided that there is an appropriate
printer driver available (but that is not the responsibility of the application).

A selection of RISC OS printer drivers

157

Wimp Programming for All

In the first part of this chapter we will look at the way in which Wimp
applications can access the drivers to produce hardcopy. Before we start,
however, we need to differentiate between text and graphics printing, since
the printer drivers have separate routines to handle each type, and each is
quite different from the other.

A typical dot matrix printer (and any other printer which can simulate a dot
matrix, usually by having an Epson emulation built in) operates in one of
two distinct ways. For normal text printing, ASCII characters are sent to the
printer, which looks up the definition of each character in its own ROM and
prints the result on the page. Styles such as italics and bold, and in some
cases other fonts, are built into the printer's ROM and accessed by a)
sequence of control codes. The important thing to realise is that the
application merely sends the printer the ASCII code of the character; the
exact representation of it is built into the printer itself.

With graphics printing, on the other hand, the application tells the printer
to place a sequence of individual dots on the page, which may be a
representation of an ASCII character or they may represent a graphic
image. In this mode, it is entirely up to the application to determine what
dots are to appear where. The interface to the RISC OS printer drivers
which we will describe in this chapter assumes that this is the mode of
operation which will be used.

In broad terms, the code to send an image to a printer driver to create a
single page is similar to that used to redraw a Wimp window. This is quite
logical, since the primary purpose of the driver is to reproduce on paper
what you see on screen (though you can in fact send any image to the ~
printer whether it appears on screen or not, provided you follow the correct
procedure). A WHILE loop is normally used in which the printer driver
repeatedly returns the co-ordinates of a rectangle whose contents the
application must draw. This continues until the driver says that it has had
enough. Preparations are then made to repeat the procedure for the next
page, and so on until the end of the document.

In contrast to window redraw routines, however, the application must give
the co-ordinates of one or more sections of the page to be drawn before the
WHILE loop is entered, and must say whereabouts on the page they are to
be reproduced. A single section could cover an entire page, or a page might
be made up of a number of smaller rectangles. Since each rectangle can
contain any combination of objects (text, graphics or sprites), great
flexibility is possible. Figure 10.1 expands the process in pseudo code.

158

Check that a driver is installed
Call PDriver _PageSize to obtain dimensions of printable area etc.
Call PDriver_SelectJob to initiate the process

FOR page=1 TO total
Make one or more calls to PDriver_GiveRectangle

to nominate areas to be printed on this page
Call PDriver_DrawPage to begin drawing process
WHILE more

Draw text and graphics as required
Call PDriver_GetRectangle

ENDWHILE
NEXT page
Call PDriver_EndJob

Figure 10.1
Pseudo code representation of the printer driver interface

INTERNAL CO-ORDINATES
Figure 10.1 gives the broad outline of what is going on, but the finer detail
will only really emerge with reference to a real example, so in a moment we
will supply a listing. Before we do so, however, it is necessary to say
something about co-ordinates and units. So far in this book we have dealt
with co-ordinates in terms of OS units, since these are the units used by the
operating system to display objects on the screen. But printers come in all
different types and in all different resolutions, and it would be a remarkable
coincidence if even one printer could work in OS units. In addition to this,
printing is often concerned with fonts, where it is normal to work in point
sizes, one point being equal to 1/72 of an inch. So for printing and also for
font handling, Acom has devised a so-called internal co-ordinate system. One
unit in this system is equal to a millipoint, i.e. 1/72000 of an inch. A SWI is
provided to read the scaling factor between millipoints and OS units, which
is normally 400 in both x and y axes (i.e. 1 OS unit= 400 millipoints).

The printer driver keeps track of paper measurements (page size, margins
etc.) in millipoints, but when actually plotting an image to the driver, the
task still specifies OS co-ordinates. The reason for this is to make it easier
for the task to establish a relationship between the image on the screen and
the image to be printed. This may seem a little confusing but it should all
become clear when we study the listing below, and in fact you will not
normally need to convert values between the two systems; in other words,
the rectangle you print is defined in terms of OS units, but its actual
position on the page is given in millipoints.

159

Wimp Programming for All

EXAMPLE PROGRAM
Listing 10.1 puts all this into practice. This should be added to OurTask in
the usual way, and when you run the updated program you will find that
when you open the window, you will see the text "Click the mouse to
print" and a blue rectangle below it. Clicking on a mouse button over the
window will cause something similar to be printed, provided that you have
installed a printer driver first. ·

Although the whole process is relatively straightforward, there is quite a lot
of detail to be grasped, some of which may be a little confusing initially. It
will help to be thoroughly familiar with the way in which printer drivers
are seen to work by the user, and of course the best way to gain this
familiarity is to use them! Experimenting with hardcopy output from Draw
and Paint, for example, is a good way to see the process in action. It goes
without saying that if at first you find the detail in this chapter daunting, do
persevere and re-read anything which is unclear.

Listing 10.1

165 DIM trans% 16,rect% 16,plotat% 8
200 whandle%=FNcreate_window(100,300,500,400,0,0,&870

00002,"Print test"}
1525 WHEN whandle%:PROCprint
2843 SYS "Wimp_SetColour•,11
2845 MOVE ox%+16,oy%-16
2848 PRINT "Click mouse to print"
2850 SYS "Wimp_setColour",8
2855 RECTANGLE FILL ox%+40,oy%-300,400,200
5000 DEF PROCprint
5010 OSCLI ("RMEnsure PDriver 0 ERROR 255 No printer

driver installed"}
5020 SYS "Hourglass_On"
5030 pf%=0PENOUT("printer:"}
5040 SYS "PDriver_SelectJob",pf%,"Test job"
5050 LOCAL ERROR
5060 ON ERROR LOCAL:RESTORE ERROR:SYS "PDriver_AbortJ

ob",pf%:CLOSE#pf%:SYS "Hourglass_Off":PROCreport(REPOR
T$,l}:ENDPROC
5070 SYS "PDriver_PageSize" TO ,w%,h%,1%,b%,r%,t%
5080 !rect%=0:rect%!4=0
5090 rect%!8=500:rect%!12=400

160

~

ChapterlO: Printer Drivers and Outline Fonts

5100 ltrans%=1<<16:trans%!4=0
5110 trans%!8=0:trans%!12=1<<16
5120 lplotat%=1%+144000:plotat%!4=b%+144000
5130 SYS "PDriver_GiveRectangle",0,rect%,trans%,plota

t%,&DDDDDDOO
5140 SYS "PDriver_DrawPage",l,block%,0,0 TO more%

WHILE more% 5150
5160
5170
5180
5190
5200
5250
5260
5270
5280
5290
5300
5310
5320
5330

SYS "ColourTrans_SetGCOL",0
MOVE 16,384
PRINT "Click mouse to print"
SYS "ColourTrans_SetGCOL",&33333300
RECTANGLE FILL 36,100,400,200
SYS "PDriver_GetRectangle",,block% TO more%
ENDWHILE
SYS "PDriver_EndJob",pf%
SYS "Hourglass_Off"
RESTORE ERROR
CLOSE#pf%
SOUND 1,-15,70,10
ENDPROC

Lines 2843-2855 replace some of the existing code in PROCredraw to display
the required text and rectangle in the window. Line 1525 adds an instruction
to PROCclick to ensure that a mouse click over the window activates the
printing process.

,--.. THE PRINT JOB

-

By taking a closer look at the definition of PROCprint (line 5000 onwards)
we can see how the print job has been implemented. To start with, we have
amended the main program at line 165 to dimension three small areas of
memory for use with the SWI calls. Moving to PROCprint itself, RMEnsure is
used to check that a driver has been installed (line 5010). Note that driver
modules still remain installed even after you select Quit from the driver's
control application on the icon bar - only the application is removed.

If all is well, the hourglass is then turned on using SWI Hourglass_On
(&406CO). Lines 5030 and 5040 initiate the printing job. The first opens a file
to the printer, which is the preferred way of handling printer output, while
the second calls SWI PDriver_SelectJob (&80145). This SWI requires the file
handle of the printer file in RO, and a pointer to a name for the job in Rl.

161

Wimp Programming for All

This suspends the current print job if there is one, and renders the
nominated job current. The name supplied with the job is used in different
ways by different printer drivers. Some will ignore it, while the PostScript
driver, for example, includes it in the PostScript header which it generates.

Before going any further our procedure needs to set up a local error
handler. This is necessary because we will have to abort the print job if any
error occurs while printing is in progress. The latter is achieved with a call
to SWI PDriver_AbortJob (&80149) with the file handle in RO. The
hourglass must also be removed by a call to Hourglass_ Off.

Figure 10.2
A printer driver's Page size dialogue box

The next thing we must do is
to find out the current size of
the page and the margin
settings. If you are not
familiar with using the RISC
OS printer drivers we suggest
that you install one and take a
look at the menu options. One
of these will be Page size, and
moving the pointer across this
entry will open a dialogue box
(see Figure 10.2) giving details
of the current page size and
margin settings. These values
can be read by calling SWI
PDriver_PageSize, and the

information returned by this call is shown in Figure 10.3.

162

R1 = x size of paper, including margins
R2 = y size of paper, including margins
R3 = left margin
R4 = bottom margin
R5 = right margin
R6 = top margin

All units are in millipoints.
R3-R6 are relative to the bottom left-hand corner of the page

Figure 10.3
Infonnation returned by SWI
"PDriver_PageSize" (&80143)

ChapterlO: Printer Drivers and Outline Fonts

The page size data is read at line 5070. In fact, we are only using the left and
bottom margins in our program at the moment, but we have included all
the other returned parameters in line 5070 for the sake of completeness.
Now we can start to tell the printer driver what to print. This process is
done page by page. In the example given here, we are only printing one
page, and the whole of the code from line 5080 to line 5260 is taken up with
the process. If we wanted to print more pages, we would have to repeat this
process for each one.

The first task is to specify all the sections we want to print on that page. In
many cases we would treat the whole page as a single rectangle, but if the
image we are printing is smaller than a page (the contents of a small
window for example) we might restrict the rectangle to just one part of the
page. There might also be some circumstances where we need to split the
page up into more than one section - for example printing in two or more
columns. ,e specify the rectangles by calling SWI PDriver_GiveRectangle
(&80148) f r each one. The parameters for this call are shown in Figure
10.4.

RO = rectangle identification word
R1 =pointer to 4-word block containing rectangle to be plotted in OS units
R2 = pointer to 4-word block containing transformation table
R3 = pointer to 2-word block containing plot position in millipoints
R4 = background colour for rectangle in the form &bbggrrOO

Figure 10.4
Parameters supplied to SWI "PDriver _GiveRectangle" (&8014B)

The identification word in RO is a value of our own choosing, and is
reported back to the application when the Wimp requests that it must be
plotted. This enables us to keep track of which rectangle is being requested.
Since there is only one rectangle in our task we have supplied a value of
zero.

The block pointed to by Rl supplies the co-ordinates in OS units of the
rectangle which the task wishes to plot. It is important to realise that these
co-ordinates bear no relation to any point on the printed page; they are for
your own use in determining what to plot in the redraw loop. In other
words, if you are drawing a specific section of a window on screen, you

163

Wimp Programming for All

could give the screen co-ordinates in the call to PDriver_GiveRectangle,
and then your redraw code would plot objects using the same co-ordinates
as you would use to plot on screen. This enables you to use the same
redraw loop for both screen and printer output, which makes a great deal of
sense for WYSIWYG printing. If on the other hand the printed image does
not necessarily relate directly to a screen image, you would normally
specify the left and bottom co-ordinates as zero, and the right and top co­
ordinates as the width and height of the rectangle you are plotting.

In other words, as far as the printer driver is concerned the values given in
this block merely determine the size of the rectangle; the co-ordinates
themselves are for your own use, not the driver's. The actual position of this
rectangle on the paper is given in millipoints in the block whose address is
in R3. If this is a little unclear then study what we have done in the listing.
At lines 5080-5090 we have specified a rectangle 500 OS units wide by 400
OS units high, whose base point (i.e. the bottom left comer) is at co-ordinate
0,0. We could make this co-ordinate 100,100; 600,800; 345,678; or whatever
we choose, provided that when we draw our image in the redraw loop, we
plot it relative to the implied position of co-ordinate 0,0. You will see how
this works when we look at our redraw loop. At line 5120 we have specified
the actual position on paper as 1%+144000, b%+144000; in other words, 2
inches in from the left margin and 2 inches up from the bottom margin.

To make this a little clearer, suppose that the rectangle we want to print is a
window on the screen 4-00 OS units square with its bottom left-hand comer
at screen co-ordinate 100,200. Within this is a line of text 50 OS units from
the left and 150 OS units from the bottom of the window. We could just tell
the printer driver that the rectangle starts at 0,0 and finishes at 400,400, and
then during the redraw loop we would plot the text at 50,150. However, for
greater efficiency we could use the same code for both screen redraw and
printing. In this case we would give the co-ordinates of the rectangle to the
printer driver as 100,200 and 500,600, and the text would now be plotted at
150,350, exactly as it would be on the screen. Whichever method we use, the
actual position of the rectangle on the paper is still determined by the
values pointed to by R3, not by the co-ordinates pointed to by Rl.

To recap, the rectangle is placed on the paper at a precise position using
millipoints; objects are drawn within the rectangle using OS co-ordinates
relative to the real or implied position of co-ordinate 0,0. This is a very
simple relationship once it is understood, and if it still seems confusing we
would suggest that you re-read the above section carefully and study what
we have done in the listing.

164

ChapterlO: Printer Drivers and Outline Fonts

,.....,
'- Unfortunately, to compound the complexity there appears to have been a

bug in the RISC OS 2 printer drivers (except PrinterPS). It makes sense to
plot the rectangle relative to the margins since we do not know what value
these will be set to. It seems that the effect of the bug, however, is to
subtract the current margin settings from the values pointed to by R3. This
means that if you do what we have done here and give the value as left
margin plus two inches, the rectangle will always be plotted two inches from
the left-hand edge of the paper regardless of the current margin setting. If
you want to ensure that the rectangle is relative to the margins, you would
need to alter line 5120 as follows:

5120 !plotat%=2*1%+144000:plotat%!4=2*b%+144000

The printer drivers in RISC OS 3 work correctly, however, so if you are
using the newer operating system you can leave line 5120 as it is in the
listing in order to print relative to the margin.

The block pointed to by R2 supplies a so-called transformation table which
will be applied to the rectangle. It uses the following transformation:

x'=(x * R2!0 + y * R2!8)/2A16
y'=(x,. R2!4 + y,. R2!12)/2A16

In our program we have used a unit transformation (lines 5100-5110) so that
the rectangle appears size for size, but it is possible to shrink, expand or
rotate it by altering the values supplied. Note, however, that all standard
drivers except the PostScript driver reject all but the simplest
transformations, and disallow any rotational element, throwing up an error
box.

What this means in practice is that unless you are using a PostScript driver,
you should leave the values at trans%+4 and trans%+8 as zero, since these
values determine the rotational transformation. However, you can
experiment with the other two values; the value at trans%+0 will scale in the
x direction, and trans%+12 in they direction. You should find that doubling
the value will double the size of the image, while halving it will have the
opposite effect. For example, try the following amendments and compare
the results with the original program:

5100 trans%!0=1<<15:trans%!4=0
5110 trans%!8=0:trans%!12=1<<15

The final parameter supplied to PDriver_GiveRectangle, in R4, is the
palette to be used when drawing the background of the nominated
rectangle. This and all other associated palette data is supplied in the form:

&bbggrrOO

165

Wimp Programming for All

The quantity of blue is given by bb, the quantity of green by gg, and so on.
White - or blank paper - is made up of 100% of each of the component
colours, just as it would be on screen, and is therefore &FFFFFFOO. The two
zeros at the end are unused, and the lower four bits of each colour should
be a copy of the top four bits. Thus a mid-grey halftone might be given by:

&88888800

This might all seem very complex at first, but as always with the Wimp, it
does become quite straightforward in use. Provided that you study the
example program carefully, and if possible experiment with it to create
your own printed output, you should find that using the printer drivers is
no more difficult than drawing an image on the screen.

As we mentioned earlier, any number of rectangles may be specified for a
given printed page, although we have only used one in the example. Any
others should be added immediately after the first, resetting the parameter
blocks as required and calling PDriver_GiveRectangle for each one.

Next we begin the plotting loop itself. This takes the form of a single call to
SWI PDriver_DrawPage (&8014C) followed by a WHILE loop which makes
repeated calls to SWI PDriver_GetRectangle (&80140). As you can see, this
is analogous to the Wimp_RedrawWindow - Wimp_GetRectangle loop
used in redrawing a window, as described in Chapter 7. The parameters to
be supplied to PDriver_DrawPage are shown in Figure 10.5.

On entry:
RO= number of copies to print
R1 = pointer to 4-word block to receive rectangle to print
R2 = page sequence number within document, or zero
R3 = zero, or pointer to page number string

On exit:
RO= non-zero if more rectangles required
R2 = rectangle identification word

Figure 10.5
Parameters used with SWI 11PDriver_DrawPage" (&8014C)

If zero is returned in RO, then printing is finished and the task can proceed
to the last actions required, which are to end the job and turn off the
hourglass, as described below.

166

ChapterlO: Printer Drivers and Outline Fonts

If RO is non-zero, however, then the rectangle whose co-ordinates are in the
block pointed to by Rl must be plotted. These co-ordinates are in OS units.

R2 and R3 are not particularly important, and are included primarily for the
use of the PostScript driver. For our purposes we can leave these as zero.

DRAWING THE PAGE
The actual plotting of the image on the page is done in exactly the same
way as redrawing a window, using commands such as MOVE, DRAW,
PRINT, RECTANGLE and so on. The co-ordinates used with these
commands are relative to the implied origin for the co-ordinates which
were given in the call to PDriver_GiveRectangle, as we described earlier. In
other words, to start drawing from a point 16 OS units in from the left and
120 OS units up from the bottom of your nominated rectangle, you should
use a command such as MOVE 16,120 if you gave 0,0 as the values at line
5080, or MOVE 270,616 if you gave the values as 254,496 and so on. Any
part of the image which is outside the rectangle will be clipped by the
printer driver.

Just as with window redraw, you can calculate which part of the image to
plot from the rectangle co-ordinates returned by PDriver_DrawPage, or
you can take the easy way out and just draw the whole lot each time,
relying on the driver to clip the unwanted parts. For a complex image,
though, the latter approach would be very inefficient. In our program we
have chosen the lazy way since our image is a simple one and for
demonstration purposes it is better to avoid a lot of extra code.

The plotting loop is at lines 5140-5260, and is just like the contents of the
equivalent window redraw loop except that colours are set using SWI
ColourTrans_SetGCOL (&40743) rather than Wimp_SetColour. This
ensures that accurate colour representation takes place in a manner
independent of the current screen mode (see the section on colour
translation below). Colours are again supplied in palette format, as
described above.

If we have any more pages to print in our document (which is not the case
here), we must now go through the whole process again from nominating a
rectangle or rectangles to plotting the image via the plotting loop. Finally,
when the whole job is finished, we call SWI PDriver_EndJob (&80148) with
the file handle in RO, and tum off the hourglass using SWI Hourglass_Off
(&406Cl).

167

Wimp Programming for All

COLOUR TRANSI.ATION
We have not mentioned the ColourTrans module before now, so it is worth
introducing it at this point. As you will be aware, different screen modes on
the Archimedes can handle different numbers of colours; for example, mode
12 has 16 colours while mode 15 has 256. However, as we have stressed
before, applications should always be mode-independent - i.e. they should
not make any assumptions about the mode in use, which should be entirely
at the discretion of the user. One of the problems this raises is that of colour,
since the range of colours available in one mode is not necessarily going to
match those in another. For this reason Acorn has provided the
ColourTrans module, whose job is to translate colours from one mode to
another. If a colour is defined in palette form, as described above, then
ColourTrans will find the nearest match among the colours available in the '
current mode.

Conversely, as here, ColourTrans can be used to set a specific output colour
irrespective of the current mode. This is not of much use for displaying on
the screen, since the screen display is of course restricted to the current
mode colours! But when using a printer driver, it allows a specific colour or
shade to be set even if the current mode does not support that colour. And
in any event, Wimp_SetColour, as we discovered when we first met the
SWI in Chapter 7, can only set one of the standard 16 Wimp colours.

RISC OS 3 has ColourTrans built into the operating system ROM, but RISC
OS 2 does not, so with the earlier operating system it is necessary to ensure
that ColourTrans is loaded before trying to use the SWis. You should
therefore include the following lines in OurTask's !Run file:

RMEnsure ColourTrans 0.51 RMLoad System:Modules.Col
ours

RMEnsure ColourTrans 0.51 Error You need ColourTran
s 0.51 or later

This assumes that the ColourTrans module (the file is called Colours) is in
your !System.Modules directory.

OUTLINE FONTS
Up to now we have only considered the use of the system font when
writing text in a task window. In this final section of the book, we will take
a brief look at the use of outline fonts for both screen displays and for
printed output. The support provided by RISC OS for outline fonts is
considerable, and it is not possible to cover all aspects of the topic in this
book. Once again, you are referred to the PRM for a full description of the
use of fonts and the Outline Font Manager.

168

ChapterlO: Printer Drivers and Outline Fonts

There are 34 SWis associated with the font manager (38 in RISC OS 3), but
we shall concentrate on just four of these. Here is a typical sequence of calls
which could be used to display a piece of text in one of the outline fonts:

SWI Font_FindFont
SWI Font_SetFont
SWI Font_Paint
SWI Font_LoseFont

The first "opens" the font in the size required. The second establishes this as
the currently selected font and size. The required text is then painted on the
screen with the third SWI, and finally the font is "closed". If the program is
operating in the Wimp environment then the sequence is more complex
because, as always when redrawing Wimp task windows, a WHILE loop
must be used to redraw the rectangles requested by the Wimp. In addition,
although there is a SWI call Font_SetPalette to set the font colours, we
cannot use this because it will corrupt the Desktop palette. Instead we must
set the font palette by other means, as we shall see when we come to
explain the program listing below.

EXAMPLE PROGRAM
To see how this works out in practice, we will tum to a real example.
Listing 10.2 should be added to OurTask in the usual way, and has the effect
of replacing the redraw and print procedures. When run, the updated
program will display outline fonts within the task's window, and send text
in outline fonts to the printer when asked to do so. As always when using
outline fonts you should ensure that sufficient memory has been allocated
for the font cache, either by pressing F12 to get to the command line and
typing:

Configure FontSize <size>

followed by a reset, or by dragging the slider bar in the Task Manager's
Tasks window. The example here makes use of some fairly large fonts, and
you should if possible allocate around 128K to minimise file access during
redraws. Note that the listing assumes that you have Trinity and Homerton
in your !Fonts directory - if not, you should substitute the names in the
listing with fonts that you do have.

Note that you must have the Outline Font Manager in your computer. This
is supplied as standard with RISC OS 3, but the font manager and fonts
provided on the Application Discs with RISC OS 2 were of the older bitmap

~ type. Outline fonts and the Outline Font Manager have been separately
available for some time, and are normally supplied when you buy a font
pack or an application such as a DTP package.

169

Wimp Programming for All

Listing 10.2

30 REM Updated to Chapter 10
120 PROCclosedown
820 PROCclosedown
200 whandle%=FNcreate_window(100,300,800,400,0,0,&870

00002,"Font test")
410 SYS "Font_FindFont",,"Trinity.Medium",320,320 TO

fl%
420 SYS "Font_FindFont",,"Homerton.Medium",960,960 TO "'

f2%
430 SYS "Font_FindFont",,"Trinity.Bold",1920,1920 TO

f3%
1200 IF title$="Font test" block%?35=0 ELSE block%?35

=1
1900 DEF PROCclosedown
1910 SYS "Font_LoseFont",f1%
1920 SYS "Font_LoseFont",f2%
1930 SYS "Font_LoseFont",f3%
1940 SYS "Wimp_CloseDown"
1950 ENDPROC
1960
2843 SYS "Wimp_SetFontColours",,0,7
2845 SYS "Font_SetFont",f1%
2848 SYS "Font_Paint",,"Clickmouse to print",16,ox%,

oy%-100
2850 SYS "Font_SetFont",f2%
2855 SYS "Font_Paint",,"60 pt Swiss",16,ox%,oy%-280
5090 rect%!8=960:rect%!12=800
5120 !plotat%=1%+72000:plotat%!4=b%+288000
5130 SYS "PDriver_GiveRectangle",0,rect%,trans%,plota

t%,&FFFFFF00
5170 RECTANGLE 4,4,952,792
5180 SYS "ColourTrans_SetFontColours",,&FFFFFF00,0,6
5190 SYS "Font_SetFont",f1%
5200 SYS "Font_Paint",,"Trinity 20 point",16,12,700
5210 SYS "Font_SetFont",f2%
5220 SYS "Font_Paint",,"SWISS 60 pt",16,12,400
5230 SYS "Font_SetFont",f3%
5240 SYS "Font_Paint",,"Trinity",16,12,100

170

ChapterlO: Printer Drivers and Outline Fonts

The first thing to be done is to open the fonts by using Font_FindFont in
lines 410-430 (and to close them again when the task terminates by placing
the calls to Font_LoseFont in a new procedure PROCclosedown at lines
1900-1950). The parameters for Font_FindFont are shown in Figure 10.6,

On entry:
R1 = pointer to font name
R2 = x point size * 16 (i.e. 16ths of a point)
R3 = y point size * 16 (i.e. 16ths of a point)

On exit:
RO = font handle

Figure 10.6
Details of SWI "Font_FindFont" (&40081)

DISPLAYING OUTLINE FONTS

while for Font_LoseFont
(&40082) you simply put the
font handle in RO. You will
notice from Figure 10.6 that
the size values are specified
in 16ths of a point; looking at
lines 410-430 you will see that
we have therefore specified
point sizes and font widths of
20, 60 and 120 for our three
fonts respectively.

The rest of the listing consists of the amendments to the redraw and print
procedures. Once the three fonts have been opened at the start of the
program we can ignore them completely until we ·receive a redraw request.
The response to this is handled by the amendments to PROCredraw in lines
2843-2855. Again, for the sake of simplicity we have opted to redraw the
whole window whenever we are asked to redraw any part of it. As you will
see, the redraw loop consists of five separate SWI calls. The first establishes
the anti-alias palette. This is then followed by two pairs of calls. The first of
each of these selects a particular font, while the second paints the text at the
location supplied.

To set up the palette, we have used SWI Wimp_SetFontColours (&400F3).
The second and third parameters (RO is not used) are the font background
and foreground colours respectively. With this call, logical colour numbers
are used, and it is assumed that colours 0-7 form a grey-scale sequence. This
may not be the case if the Wimp palette has been altered.

We have used colours 0 and 7 - white background and black foreground,
rather than the grey background used for our main window previously. The
reason for this is to make the screen palette mirror the palette which will be
used for hardcopy. By amending line 1200 in the listing we have ensured
that the colours for the info box and save box are unchanged.

171

Wimp Programming for All

To select the font to be used with SWI Font_Paint, we use SWI
Font_SetFont which takes a single parameter, the handle of the required
font in RO (as supplied by Font_FindFont above). The parameters for
Font_Paint are shown in Figure 10.7.

R 1 = pointer to string
R2 =plot type
R3 = x co-ordinate
R4 = y co-ordinate

The plot type in R2 is determined as follows:

Bit Action
0 1 = justify text, 0 = left justify
1 1 = rub-out box required, 0 = no box
2 must be zero
3 must be zero
4 1 = OS units in R3/R4, O = millipoints
5-7 must be zero

Figure 10.7
Parameters for SWI "Font_Paint" (&40086)

We have used a plot type of 16, which means that the text will be left
justified, with no rub-out box, and that x and y co-ordinates marking the
start of text will be supplied in OS units. For details of text justification and
rub-out boxes, you are referred to the PRM. A final point to note in
connection with this call is that, as usual, the origin is at the top left-hand
corner of the work area, so that y co-ordinates range from zero (at the top of
the window) to negative values.

PRINTING OUTLINE FONTS
Depending on the quality of your printer, some quite spectacular results
can be obtained by sending graphics and outline fonts to the printer drivers.
Listing 10.1 earlier in this chapter did not really show what can be done, but
Listing 10.2 will give you a better idea of what you can achieve. The result
of clicking the mouse over the window (assuming you have a printer driver
installed and a printer connected) should look something like the
illustration in Figure 10.8.

172

ChapterlO: Printer Drivers and Outline Fonts

Looking at the listing, you will see that the
new version of PROCprint is very much
like the old one in Listing 10.1, except that
the lines falling within the redraw loop
follow the style of those used in the new
window redraw loop. There is one vital
difference between the two, however: the
anti-aliasing palette is set by using
ColourTrans_SetFontColours rather than
Wimp_SetFontColours. It is essential to
use the former here to achieve the best

---. conversion of the colour palette into
printed output. The parameters for this
call are shown in Figure 10.9.

SWISS 60 pt

Trinity

Figure 10.8
Printed output from Listing 10.2

The palette is supplied in the usual &bbggrrOO format described above, and
here we have used white as the background colour and black as the
foreground. The final parameter (R3) gives the number of colours to be
used for the anti-alias palette (i.e. how many in-between colours are to be
used), and may take values from 0-14. Now, if we are addressing the printer
drivers this parameter will be ignored - you cannot perform anti-aliasing on

RO= font handle (0 for current font)
R1 =background palette
R2 = foreground palette
R3 = maximum colour offset

Figure 10.9
Parameters for SWI

"ColourTrans_SetFontColours" (&4074F)

a mono printer, because paper
pixels can only be black or
white (white = no dot). We have
nevertheless used a value of 6
(the Wimp grey palette runs
from colour 0 to colour 7, and
thus has 6 in-between colours)
for compatibility with screen
use.

If you look at the printout produced, you will see that it is different from the
screen display. It contains an additional rectangular border, and the text is
different. This is easy to achieve, because we have used different code for
redrawing the task's window from that which addresses the printer drivers.
In many applications, however, it is vital to achieve a WYSIWYG effect. In a
word processor or DTP package, for example, it would make a great deal of
sense to use a single piece of code which could be called by the equivalents
of PROCredraw and PROCprint. If this is the case you would normally use
ColourTrans_SetFontColours for both screen and printer colours. In this
case, the final parameter supplied with this call becomes important, since it
is necessary for on-screen anti-aliasing.

173

Wimp Programming for All

There is a lot of experimentation which you could carry out using this
listing as a basis, and the program could easily be extended to generate
almost any kind of hardcopy. For example, it could read in a file of names
and addresses and print out smart looking address labels; or you could
generate graphs, bar charts, posters, or whatever - all with the same pixel
perfect crispness, given of course a good quality printer.

EPILOGUE
We have now sadly reached the end of our journey through the Wimp. If
you have enjoyed the trip, you will probably by now be writing your own
Wimp programs and no doubt will have made many amendments to our
listings in the course of your experiments. We hope you have found the
book both instructive and enjoyable. There is of course much more to learn
if you want to delve further into the subject - the RISC OS 2 PRM runs to
over 1800 pages and the RISC OS 3 version is even larger. Nevertheless, the
information we have presented here is enough to enable you to construct
many quite powerful applications of your own. We hope that we have not
left you floundering too often in the course of the book, but we can assure
you that the Archimedes is so powerful and versatile that the satisfaction
you will gain from mastering the Wimp will repay all the effort involved.
Happy programming!

174

Appendix A. Indirection Operators

There are a number of reasons why you may need to access memory
directly on an Archimedes. You might, for example, need to work with text
strings longer than the 255 character limit imposed by Basic, or you may
need to set up parameter blocks for use with SWI calls, as we have
described in numerous places in this book. Here is how it is done.

RESERVING MEMORY
First of all you must reserve an area of memory. This is done by using the
DIM statement, and you will see throughout the listings in this book that
we have used this statement to reserve the memory required for our
parameter blocks. As an example:

DIM block% 255

will reserve 256 bytes of RAM (i.e. one byte more than specified) for use by
your program, and the variable block% will be assigned (by Basic) to hold
the start address of this block. It is worth noting that the block is always
word-aligned (i.e. the start address is always divisible by 4).

READING AND WRITING TO MEMORY
BBC Basic V (as provided on the Archimedes) has four so-called indirection
operators for reading and writing directly to memory. The details of these are
shown in Figure A.1.

Symbol

?

I
$

Purpose Number of bytes

read/write a byte
read/write a 32-bit word
read/write a floating point value
read/write a string

FigureA.1
Basic' s four indirection operators

4
5
0-255

175

Wimp Programming for All

To store a byte of value 123 at the location block%, use the query operator: '
?block%=123

Only integers in the range 0 to 255 may be stored in this way. To display the
value at block%, use:

PRINT ?block%
This will only work of course if you have already reserved an area of
memory at block%.

The piing operator (!) works in a similar way:
!block%=100000

will store the value 100000 at block%. But now it is stored in four
consecutive bytes (low byte first), thus providing a much greater range of
values, namely -2147483648 to 2147483647. To display the four-byte {32 bit)
value at block%, use:

PRINT !block%

The two operators ! and ? (but not I or $) can make use of a special so­
called dyadic form of notation, where:

block% ?4 is equivalent to ? (block%+4)
and

block%! 100 equates to ! (block%+100)
In other words, the address is formed by adding the two values together.
The value before the operator must be a variable, while the second value
may be a variable, a number or a bracketed expression.

The I operator (the I key is just above the Return key) functions in a
similar way to query and piing, except that it uses five consecutive bytes,
and is used for treating floating point numbers. The range of these is:

-1. 7xle>38 to l.7x1038

with an accuracy of 9 significant figures.

The $ operator will store and retrieve strings. To store the string "bananas"
at block%, use:

$block%="bananas"

The effect of this is to store ASCII "b" at block%, ASCII "a" at block%+ l, and
so on. A carriage return character (ASCII 13) is automatically added at the
end of the string in memory (in this case at block%+7), but this is not echoed
when the string is retrieved. Thus if you use:

text$=$block%

to read the string into text$, the latter will not contain a carriage return.

176

Appendix A: Indirection Operators

..-.., Finally, you might like to try the short accompanying program to
demonstrate the use of each operator.

10 REM >MemAccess
20 REM Demo of indirection operators
30
40 DIM block% &100
so
60 ?block%•255
70 block%!4=100000
80 l(block%+8)=1.23456789876E9
90 $(block%+13)=-"String storage"

100
110 PRINT ?block%
120 PRINT block%!4
130 PRINT I (block%+8)
140 PRINT $(block%+13)

177

Appendix B. Application Resources

The concept of application directories was devised by Acorn as a way of
ensuring that all applications running under RISC OS follow a standardised
pattern. This approach is beneficial for a number of reasons. Firstly, it is
easier to maintain uniformity of appearance, and therefore new
applications will seem more familiar to the user when they are
encountered. Secondly, it provides a framework for the programmer to
follow, rather than leaving each individual to go his own way in the dark.
Thirdly, it allows applications to be filing-system-independent; in other
words they will always work irrespective of where they are located.
Fourthly, RISC OS itself can recognise an application as such, and also
recognise the purpose of certain files within the application directory
provided that they have been given the standard names. And finally, the
resources for an individual application are collected in one place, instead of
being spread around.

If you have already read Chapter 1 and followed the advice we gave you
then, you should by now have an application directory called !OurTask, into
which you have placed a !Run file together with the !Runlmage program
made up of the listings given in each chapter. This skeleton framework has
enabled you to run the program from the Desktop, but there is much more
to be said about application directories and the resources contained within
them. If you open up a typical application directory belonging to a '
commercial application, you are likely to see quite a number of different
files inside it (see Figure B.1). As well as the two we have already met, there
could be files called !Boot, !Sprites, !Help, Templates, and Sprites, as well as data
files called Choices, Defaults or whatever. Files whose names begin with "!"

Figure B.1
A typical application directory

178

Appendix B: Application Resources

have a special meaning to RISC OS, while other files can have any name the
application chooses but usually conform to commonly-used conventions.

T. !RunFILE
As we said in Chapter 1, when a user double-clicks on an application
directory, RISC OS looks for a file called !Run within that directory. If this
cannot be found, an error is generated, so it follows that you must provide
such a file if you wish your application to be started up from the Desktop in
the normal way.

!Run must always be an Obey file, which means that the list of commands it
contains are commands which can be executed by the operating system. In
other words, any commands which can be typed at the command line, or
executed from Basic as star commands, can be included (though you do not
need to include the star character itself).

You will find it useful to look through some of the !Run files in your
collection (those belonging to Edit, Draw and Paint, for example) to see how
such a file is compiled, and what kind of commands are included. Just drag
the file into Edit to view it. A typical !Run file for a small application might
look like this:

Set AppName$Dir <Obey$Dir>
Wimpslot -min 64K -max 64K
Iconsprites <Obey$Oir>.!Sprites
Run <0bey$Dir>.IRunimage

We will describe what these lines do one by one, but first it is necessary to
explain the meaning of that curious phrase <0bey$Dir>. Whenever an Obey
file is executed, the full pathname of the directory which contains the file is
placed by the operating system into a system variable called Obey$Dir. This
is a very powerful feature of RISC OS which allows applications to be
completely media-independent - in other words, it doesn't matter which
disc or filing system they are run from because the path which points to the
application is not determined until it is actually run (i.e. Obey$Dir is set by
running !Run). Compare this with programs on the old BBC micro, for
instance, which expect the disc to be in drive 0 and complain if it is not. It
also means that all the commands in the !Run file can make use of Obey$Dir
if they need to; for example, the line:

~ Run <Obey$Oir>.!Runimage

which we already have in our own file makes use of Obey$Dir to tell the
operating system exactly which !Runlmage to run (the angle brackets around

179

Wimp Programming for All

the variable merely tell the operating system to substitute the current value
of the variable, i.e. at this point in time the application's pathname, when it
is encountered).

Now we will look at the commands themselves.
Set AppName$Dir <0bey$Dir>

sets a new system variable to the current value of Obey$Dir. This new
variable can have any name you choose, but it is usual to use the name of
the application followed by $Dir as we have done here. This immediately
ties in the variable to your application and ensures that under most
circumstances it will be unique. The reason why we might need this
variable is so that we can find the path back to the application directory
later on, while our task is running. If you think about it, Obey$Dir will
change next time an Obey file is executed (for example when another
application is run), and so if our task needs to look for resources within its
directory (a default choices file perhaps), it cannot rely on Obey$Dir still
pointing to the same place. For this reason, if you need to access any files at
all within the application directory once your task has been installed, you
must set a system variable as here, and then use this to access the file. For
example:

file%=0PENUP{"<AppName$Dir>.Choices")
would open up a file called Choices within the application directory.

WimpSlot -min 64K -max 64K

sets the size of the memory slot which will be allocated by the Wimp to the
application when it is run. This should be large enough for the program
itself, its variable storage area and stack, any blocks of memory reserved
from within the program, and Basie's own workspace (currently from
&8000-&SFOO). There is no hard and fast rule on how to calculate the slot
required, other than to err on the large side (if in doubt, add 16K to the size
of the program plus the total of all your reserved memory blocks). If the
WimpSlot is not large enough to run the program, you are likely to get an
error of the form "No writable memory at this address", since the program
will overrun the highest address allocated by the Wimp for its use. If the
program installs, but there is not enough room for variable storage or
reserved memory blocks, the error will depend on the action the program is
trying to perform at the moment the memory runs out. This could be "No
room for this DIM" or "Too many nested structures", for example.

IconSprites <Obey$Dir>.!Sprites

tells the Wimp to put all the sprites in the application's !Sprites file into the
Wimp sprite pool. We will be looking at the purpose of this file in a

180

Appendix B: Application Resources

moment. Normally this action is performed automatically whenever an
application is seen for the first time in a directory display (usually by the
!&Jot file - see below), but it is wise to include the line in the !Run file for the
simple reason that if a user runs the application from a boot sequence when
the computer is started up, the directory display will not have been opened.
In these circumstances, if this line is omitted from the !Run file, the
application will be installed but the icon on the icon bar will be invisible.

Run <Obey$Dir>.!Runimage

should be the last line in the !Run file, and causes the !Runlmage program to
be run.

There are many other commands that may be, and often are, included in a
!Run file. For example, modules may be loaded, filetypes may be set and so
on. For most simple applications, however, the lines described here are
usually adequate.

THE !Boot FILE
Most applications, though not all, have a !&Jot file. This is executed
automatically whenever an application is seen for the first time in a
directory display. For this reason, it normally contains . the line we saw
earlier:

Iconsprites <Obey$Dir>.!Sprites
If there is no boot file, then this action is performed automatically by the
Wimp in any case, but if there is a boot file, it should always contain this
line.

There are other reasons for having a boot file. If an application has been
designed to recognise certain filetypes which "belong" to that application
(as Draw does, for example, with Draw files), then it is useful for the sprites
for these files, and the actions to be performed when the files are double­
clicked, to be notified to the Wimp at the earliest possible stage. So a boot
file can make sure that the Wimp has a copy of the sprites by putting them
in the sprite pool as we saw above, and can also set the system variable
which tells the Wimp how to proceed if a file of that type is run. This would
be done with a line such as:

Set Alias$@RunType_nnn Run <Obey$Dir>.!Runimage %%*0
which ensures that when a file of type nnn is double-clicked, the !Runlmage
program belonging to the application which owns the boot file is run.

181

Wimp Programming for All

THE !Sprites FILE
All applications will normally have a file called !Sprites. It is not obligatory
to have one, but since the main purpose of this file is to provide the sprite
which is is used to illustrate the application both in the directory display
and on the icon bar, it is advisable to include one. The file will normally
contain at least one sprite called !appname; in other words, the same name as
the application directory itself. The Wimp will then recognise this as the
sprite to use in the directory display. Following Acorn's guidelines, this
sprite should be created in mode 12 and should be 34x17 pixels in size.
Strictly speaking, you should also provide a second, smaller sprite (17x9
pixels) called sm!appname, which is used when the Small icons option is
chosen for directory displays. If the application "owns" any filetypes, the
sprites for these will also be in the !Sprites file. For an example of this, look
at Maestro; you will see that its !Sprites file has a sprite called file_afl for its
file icons.

Other files which may be found inside an application directory are:

Templates this will contain window template definitions as
described in Chapter 9.

Sprites

!Help

this will normally contain a set of sprites which are
used within the program and will be loaded into a
user sprite area - see Appendix C. There may also
be files called Sprites22 and Sprites23, which contain
sprites for use in different modes.

if the Filer finds a !Help file within an application, it
will add a Help option to its Application submenu.
Choosing this option will run the file, which will
normally contain descriptive text about the
application.

In addition to these commonly-used resources, an application may have any
other files it may need inside its directory, such as defaults to be loaded in at
start-up and so on.

This appendix is only intended to give you a brief introduction to
application resources. The subject is often covered in magazine articles and
other publications relating to the Archimedes, as well as the PRM and
Acom' s RISC OS Style Guide, and a greater understanding of the use of
application resources can often be gained by studying the structure of
various applications themselves.

182

Appendix C: Setting up a Sprite Area

Appendix C. Setting up a Sprite Area

Many programs use sprites in their window displays. These may be sprites
which the programmer has designed himself, or they may be sprites which
already exist, either as part of the pool of sprites built into the RISC OS

· ,-.,, ROM, or defined by some other application. In addition to the ROM pool,
the Wimp maintains a second sprite pool in RAM, and this is where all
sprites whose files are subject to a *IconSprites command are put. This
enables applications to place their own sprites (e.g. for directory displays,
filetypes, icon bar icons etc.) into the pool so that they are always available
when they need to be displayed. You can see all the sprites that are
currently in both the ROM and RAM pools with the following simple
program:

10 SYS "Wimp_BaseOfSprites" TO rom%,ram%
20 SYS "0S_Sprite0p",268,rom%,"ROMSprites"
30 SYS "OS_SpriteOp",268,ram%,"RAMSprites"

This program will save two sprite files in the current directory, called
ROMsprites and RAMsprites. These files can then be loaded into Paint to view
the sprites.

As explained in Chapter 5, it is possible to display these sprites in icons by
setting the appropriate sprite area pointer to point to the Wimp pool.
However, it is normally only necessary to load into the Wimp pool those
sprites which are actually needed for other purposes, such as directory
displays and filetypes. Every sprite loaded into the Wimp pool takes up
memory, and it is not a good idea to fill the pool with sprites that are only
used within your program, since they will then remain in the pool after the
task is terminated, taking up valuable memory.

The recommended method of using your own sprites is to create a sprite
area within the program, by reserving a block of memory and loading the
sprites into it. You would then have two sprite files in your application
directory: the normal !Sprites file would contain only those sprites which are
required by the Wimp (see Appendix B for further details), while a second
file would hold all those sprites which you wish to load into your own area.
This can have any name you like, but is usually called Sprites.

183

The sprite area would be set up as follows:
file%=0PENIN"<AppName$Dir>.Sprites"
size%=EXT#file%+4:CLOSE#file%
DIM sparea% size%
!sparea%=size%:sparea%!8=16
SYS"OS_SpriteOp",&:10A,sparea%,"<AppName$Dir>.Sprites"

The first two lines find the size of the sprite file, then the third reserves a
block of memory starting at sparea% equal to this size plus 4 bytes for the
initial word of the sprite area header, which is not saved as part of the sprite
file. The sprite area is set up in the fourth line by placing the size of the area
at sparea%, and a value of 16 at sparea%+8 (this value will normally always)
be 16 - don't worry about why for the moment). The final line then loads a
file called Sprites from a directory pointed to by AppName$Dir (see Appendix
B) into memory at sparea%. Provided that the sprite area pointers in your
window and/ or icon definition blocks point to sparea%, as described in
Chapters 5 and 9, then any sprites from the file which are used in sprite
icons will be displayed correctly.

A full description of OS_SpriteOp is outside the scope of this book, but the
PRM gives all the details of its use. For all practical purposes, the lines
shown above can always be added to a program in order to create a sprite
area and load in a sprite file. AppName$Dir must of course be replaced by
your own system variable (see Appendix B).

184

,--...

Appendix D. SWI calls described in
this book

SWI call SWinumber Introduced in
Chapter

ColourTrans_SetFontColours &4074F 10
ColourTrans_SetGCOL &40743 10
Font_FindFont &40081 10
Font_LoseFont &40082 10
Font_Paint &40086 10
Font_SetFont &4008A 10
Hourglass_ Off &40C61 10
Hourglass_On &40C62 10
OS_ReadModeVariable &35 7
OS_ReadVarVal &23 8
OS_SpriteOp &2E 7
PDriver_AbortJob &80149 10
PDriver_DrawPage &8014C 10 .
PDriver_EndJob &80148 10
PDriver_GetRectangle &8014D 10
PDriver_ GiveRectangle &8014B 10
PDriver_PageSize &80143 10
PDriver_SelectJ ob &80145 10
Wirnp_CloseDown &400DD 1
Wimp_CloseTemplate &400DA 9
Wirnp_CloseWindow &400C6 2
Wirnp_Createlcon &400C2 5
Wirnp_CreateMenu &400D4 6
Wimp_CreateSubMenu &400E8 6
Wimp_CreateWindow &400Cl 2
Wirnp_DragBox &400DO 8
Wimp_ForceRedraw &400Dl 7
Wimp_GetlconState &400CE 5
Wimp_GetPointerlnfo &400CF 6
Wimp_ GetRectangle &400CA 7
Wimp_GetWindowState &400CB 2
Wirnp_Initialise &400CO 1
Wimp _LoadTemplate &400DB 9

185

Wimp Programming for All

Wimp_OpenTemplate
Wimp_OpenWindow
Wimp_Poll
Wimp_ProcessKey
Wimp_RedrawWindow
Wimp_ReportError
Wimp_SendMessage
Wimp_SetColour
Wimp_SetFontColours
Wimp _SetkonState
Wimp_UpdateWindow

186

&400D9
&400C5
&400C7

&4000C
&400C8
&400DF
&400E7
&400E6
&400F3

&400CD
&400C9

9
2
1
3
7
1
8
7

10
5
7

Appendix E. The Associated Disc

A disc to accompany this book is available from the publisher&. The disc
contains the application OurTask at each stage of its development, so that
(for example) OurTask5c is the application as it should be if Listing 5.3 has

,-. just been added to the !Runlmage program.

In addition to the listings from the book, the disc contains the Wimp
Function/Procedure Library, as published in RISC User magazine from May
1992 to August/September 1992. This is a library of useful functions to
enable applications to be created easily without having to write specific
code to create windows, icons or menus. For example, there is a more
generalised version of FNcreate_windcrw which allows more parameters to be
specified, which would be too complex to introduce in a tutorial book such
as this. There are routines to create the most common types of icons
(such as icons on the icon bar,) and a set of menu procedures which make
menu creation very easy indeed. Full documentation is included on the disc.

OBTAINING THE ASSOCIATED DISC
The disc of programs described above may be obtained direct from the
publisher for £4.95 inc. VAT plus £1 p&p. The disc is a 3.5" E-format disc for
use on the Archimedes.

187

Appendix F. The Wimp Programmer's
Toolkit

The Wimp Programmer's Toolkit is a collection of twelve multi-tasking
utilities for use when creating Wimp applications. The applications
included are as follows:

0 SpyGlass - allows you to select any running application and display
dynamically the contents of the memory allocated to it

0 Wimp Debugger - provides a set of routines to incorporate into
your application code so that debugging information can be displayed in
a Wimp window while the application is running

0 Template Editor -Acorn's FonnEd for designing windows, as described
inChapter9

0 Template File Browser - gives detailed information on the contents of
template files

0 Application Shell Generator - creates application directories
automatically

0 Menu Editor - enables menu structures to be defined and saved as
special files which can be loaded by your application

0 WimpAid- displays information about objects under the mouse pointer,
such as window handles, icon handles, co-ordinates etc.

0 Icon Bar Shell - a program shell which allows icon bar applications to be
created easily simply by appending code to one procedure

0 Desktop File Loader - allows files to be loaded quickly to speed up
editing

0 Icon Flag Generator - calculates the value of icon flags easily
0 EasyWimp - ready-made Wimp application shell for window-based

applications
0 Wimp Message Monitor - monitors Wimp message passing as it

happens

OBTAINING THE WIMP PROGRAMMER'S TOOLKIT
The Wimp Programmer's Toolkit may be obtained direct from the publisher
for £19.95 inc. VAT plus £1 p&p. There is a special price of £14.95 plus £1
p&p for subscribers to RISC User magazine.

188

Index

!Boot file 180 Edit 17,19-20,36,48
!Help file 182 90,102,112,142
!Run file 19-20,116,168 179

178-181 error box 23,47,48,54-56
!Sprites file 77,178,180-183 69,126-127
Acorn guidelines 11,33-34,91-92 error handling 22-23,52-58,162 ..-... 137,139,145 error numbers 54

182 error reporting 53-56
anti-aliased font 37,76 errors 20,22,23,52-53
application directories 18-20 56,57,116,126-

178-182 127,136-137
application resources 19,81 153-154

178-182 162,180
ARM processor 13 file information utility 124
ARM registers 13-15,26 file type 91,123-127
buttons 14-15,38,47,58,81 138-139

118,134-135,160 181-183
button state 38,46-47,95,134 filing systems 10,178-179
caret 36,48,60,72-73,146 font, anti-aliased 37,76
closing windows 40,46 font, outline 157,159,168-174
CMOS RAM 15 font, system 37,168
colour translation 168,173 font cache 15,169
command line 36,49,179 font colours 169,171,173
data files 10-12,119 font handle 171-172
data transfer 10-11,72,122 font manager 168-169

128-136 font printing 172-173
dialogue box 70,90,98-99,122 font size 171

138-139,162 fontSWis 169
directories 10,18,20,36,59 Form Ed 141-151,154,156

69,80,122,130 function keys 48-49,73
178-183 Graphical User Interface 9

drag box 134-135 graphics 25,35,46,102-
dragging objects 47,119,122-127 104,116-118

130-131 graphics printing 158,172,174
133-136,147 hardware devices 11

Draw 90,102,104,160 hot keys 36,48,61
179,181 hourglass 161,166-167

189

Wimp Programming for All

icon 9,12,17-18,20,23 icon button type 65-66,69-70 ,72 n
25,39,46-47,53 80,91,130,133
55-56,58-84,91 147-150
99,102,113,130 icon colours 59-60,66,70,76

133,141,144-151 icon co-ordinates 62-63,66,69,74
153-155 80,134,136

altering 63,74-75,156 148
creating 60-80,147-150 icon flag generator 66,72-73,82-84

153,155-156 icon flags 59-60,63,66-70
ESG 64,66,69-71,91 72-75,79,80,91

149-150 99,147
indirected 63,66-69,72 icon handle 60-61,74,123

74-75,77-78 135-136
91,133,147 147-148,151

149-150,153 IamSprites 77,180,181,183
155 icon state 74,94

menu 65,70,72 indirected workspace 153-154
radio 65 ,70-72,78-80 indirection operators 29,32

94,96,101,105 175-177
108,111,143 info box 98-99,171

149,151 initialisation 16,18,22,25,88
selected 59,64,69-70,74 input focus 73,139-140,146

79,94,96,150 internal co-ordinates 159
shaded 59,74-75 keyboard 7,17,42,112
sprite 59,67-68,77-78 keypresses 36,46,48,58

80,130,133 72-73,112
139,148,150 margins 159,162-163,165

155,184 memory allocation 19-20,116,180
text 12,59 ,67-68,72 menu 9 ,38,59 ,66,70

76-77,147 85-101
150-151 menu colours 89

text-plus-sprite 63,67-68,71 menu co-ordinates 89,92,95
76-80,149 menu creation 85-92,95-96,100

155 menu flags 89-91,96,122,137
validation 68,75-79,133,149 139
writable 48,53,59,65,72,76 menu items 59,70,87,89-95

101-102,130, 133 111,130,138
136-137,143,149 shaded 91,95

icon bar 80-81,87-88,92 ticked 85,91,95-97
100,123-124 menu selection 87,92-98,100
130,143,148 134,138

181,183 menu title 89,92

190

Index

-..
'-

message action code 120-123,128- Programmer's Reference Manual
129,135-137 8,15,59,77,80

message receiving 119-126,136 118-120,127
139 134,168,172

message sending 128-129,136 174,182,184
message system 119-139 reason code masking 50,61
mouse 9,12,14-15,37 reason codes 17,20,22,25,27

42,45-47,70 42-50,61,73,76
130,135 87,92-94,99

multi-tasking 10-12,17-18,21 102-103,106
23,43,45,50,91 110,115,119

.~ 122,130 129-130
'- Obey$Dir 179-180 134-136,138

object dragging 47,119,122-127 redraw 25,35,46,102-118
130-131 145,158,169,171

133-136,147 173
opening a window 27,39-40,45,61 forced 108-112,118,127

80-81,102-103 graphics 116-118
outline fonts 157,159,168-174 text 102-105,108-109
page siz.e 159,162-163 112-115
Paint 17,59-60,70-71 redraw rectangle 104-105,107,110

78,90,148,160 112-113,115-116
179 158,163-164

parameter blocks 14,16,22-23,26 166-167
39,60-61,88 RISC OS 6,9-10,17,19,55,70

153-154 76,90,95,112,124
pointer 9, 14,42,46-47 126,128,130, 144

50,59,65,70,76 157,162,165
90,92,99,130 168-169,174
135,137,139 178-179,183

pointer co-ordinates 46-47 save box 72,90-91,122
poll mask 50 128,130-134
PostScript 161,165,167 137-140,171
print colours 165-168,173 saving data 121,130-137
print co-ordinates 159,163-164 Software Interrupt 13

167 sprite 18,20,36-37,39
printer driver 80,157-168 59 ,66,76-81,91

172-173 105,116-118
printer file 161 148-150,152
printers 10,157-158 155,180-184
printing fonts 169,172-173 sprite area 39 ,68,77,152
print job 161-167 155,183-184

191

l
Wimp Programming for All

sprite file 18,77-78,155 window 9,12,24-41,45-47
,,

182-184 so ,60-62,80-81
string pointer 14,17,67 90,98-99
string terminator 54-55,126,154 102-118,127,130
submenu 88,90,93,96-98 139-140,141-156

137,139 closing 40,46
submenu warning 90-91,96,122 creating 25-39,60-61;98-

137-139 99,130,141,143-
SWI calls . 13-16,22,55,88 .146,152-156

126-127,175 opening 27,39-40,45,61
error-returning 126-127 80-81,102-103

SYS 13 redraw 25,35,46,102-118,145 ~ system font 37 158,169,171,173
system variables 126-127,179- scroll bars 25,32-34,36,102

181,184 115,144,146,150
task handle 16-17 scrolling 27,32,36,45 .
task initialisation 16,18,22,25,88 scroll offsets 29,31-33,39,107
Task Manager 17,36,120,169 visible area 30-33,69,107,115
task termination 18,22,27,40 144,146-147

120,171 work area 30-33,37,62,69,107
templates 141-156,182 109,111,115,134
text arrays 113-115 144-146
text printing 158 work area flags 37-38,47,65
transformation table 165 window colours 29,33-34,36,104
Wimp - introduction 9-12 139-140,145-146
Wimp applications 10-12,18 window co-ordinates 30-32,39-40
Wimp message system 119-139 window dragging 25,27,36,39,45
Wimp palette 33,36,108,168 61,99,102,108

f) 171,173 112,144-145
Wimp poll 17,20,22,25,27 window flags 29,34-36,39 ,41

38,42-51,54,56 98,102-103
75-76,87,92,95 106,127

100,102,106,110 144-145,147
118,119,129,134 window handle 26,29,39,40,46-

Wimp Programmer's Toolkit 47,60,62,74,80
8,141,???-??? 99,123,135-136

WimpSl.ot 20,180 138
Wimp sprite pool 68,77-78,80 window identifier 143,146,154

133,139,148 window size 29-32, 144, 150
155,180-181 window state 40,127)

183 window title 29,32,38,98,112,
Wimp SWI calls 15-16,???-??? 139,144,146,154

192

